

[PLPN89] Perkins, W.A. , Laffey, T.J . , Pecora, D . , and Nguyen, T.A. , "Knowledge Base
Verification," Topics in Expert System Design, Elsevier Science Publishers,
North Holland, 1989. pp. 353-376.

[Puur87] Puuronen Seppo, "A Tabular Rule-Checking Method," Proc. of the 7th Int 'l
Workshop on Expert Systems and Their Applications, VoL I, Avignon, France,
May 13-15, 1987, EC2 Publishing, France, 1987, pp. 257-268.

[RaWe85] Rapps , S. and Weyuker, E.J . , "Selecting Software Test Data Using Data Flow
Information," IEEE Trans. on Software Engg. Vol . SE-l l , no. 4 , April 1985,
pp. 367-375.

[RGOM89] Radwan, A. E. , Goul, M. , O 'Leary, T .J . , and Moffitt, K.E. , "A Verification
Approach for Knowledge-Based Systems ," Transportation Research Journal,
Vol. 23A, no.4, 1989, pp. 287-300.

[RyPa88] Ryder, B .G. and Paull, M.C . , "Incremental Data Flow Analysis Algorithms,"
A CM Transactions on Programming Languages and Systems, Vol . 10, no. 1 ,
Jan. 1988, pp. 1-50.

[SCSC87] Stachowitz, R.A. , Chang, C.L . , Stock, J .B . , and Combs, J .B . , "Building
Validation Tools for Knowledge-Based Systems," First Annual Workshop on
Space Operations Automation and Robotics, NASA Conf Publication 2491 ,
Houston, TX, August , 1987, pp. 209-215.

[Smit88] Smith, Peter, Expert System Development in Prolog and Turbo-Prolog,
Halstead Press, N.Y. , 1988.

[SuSS82] Suwa, M. , Scott, A .C . , and Shortliffe, E.H. , "An Approach to Verifying
Completeness and Consistency in a Rule-Based Expert System," The AI
Magazine, Fall 1982, pp. 16-21 .

[TaSu87] Tai , K.C. and Su, H.K. , "Test Generation for Boolean Expressions ,"
Proceedings of the IEEE 1 1th Conf. on Computer Software and Applications,
Tokyo, Japan, Oct. 1987, pp. 278-284.

[ViAy90] Vignollet , L. and Ayel, M. , "Conceptual Model for Building Sets of Test
Samples for Knowledge Bases ." Unpublished report .

[WeOs80] Weyuker, E.J. and Ostrand, T.J . , "Theories of Program Testing and the
Application of Revealing Subdomains ," IEEE Trans. on Software Engg. Vol.
SE-6, May 1980, pp. 236-246.

[WhCo80] White, L.J . and Cohen, E.! . , "A Domain Strategy for Computer Program
Testing," IEEE Trans. on Software Engg. Vol. SE-6, May 1980, pp. 247-257.

[Zade84] Zadeck, F .K. , "Incremental Data Flow Analysis in a Structured Program
Editor," Proc. of the ACM SIGPLAN Symposium on Compiler Construction,
June 1984, SIGPLAN Notices, Vol. 19, no. 6, pp . 132-143.

- 3 4 0 -

MANAGING IN THE CLEAN ROOM ENVIRONMENT

Prepared for
9th Pacific Northwest Software Quality Conference

Portland , Oregon
October 7, 1 991

Michael Dyer
IBM Federal Sector Division
Bethesda, Md. 2081 7

- 3 4 1 -

THE CLEANROOM METHOD

Cleanroom is the name of a software development method [1] which was organized to

suppo rt the measurement and certification of software Mean-Time-To-Fai lure (MTTF) ,

prior to the release of software to its user. C lean room i s also the label for a col lection of

software engineeri ng methods which are the components of the Clean room software

development method. The term Clean room was selected to draw attention to a develop­

ment process which strives to prevent the i ntroduction of errors during software devel­

opment.

The Cleanroom software development process is organized as a set of component

methods, which can be applied individually but i n combination represent a radical departure

from current software development practice. The Clean room process extends beyond the

boundaries of what is normally i nterpreted as software development and deals with

software specification at one extreme and with functional software test ing at the other

extreme. Clean room i ntroduces new contro ls for software development, imposes new roles

and responsibi l ities on the various engi neeri ng discip l ines, e l iminates some seemingly

core methods from the development process and raises the level of train i ng and proficiency

required of the engi neering discipl i nes.

The total Cleanroom process should be used for software deve lopment to realize its fu l l

potential for enhancing product quality and process productivity. However, transition ing to

a total ly different development process is not always practical with in an o ngoing software

development environment and an i ncremental i ntroduction of the Cleanroom components

has proven to be a more effective strategy for techno logy transfer. Each of the half dozen

components addresses a specific aspect of the software development process, makes a

separate contribution to the development and has a unique set of considerations for process

i nsert ion. The components have been used i ndividual ly and in combi nation with demon­

strable positive resu lts. This i ncremental realization of positive resu lts generally leads to

the gradual i ntroduction of the total process, which can now be accomplished without the

trauma of switching to a radical ly new development process.

Michael Dyer

IBM Federal Sector Division

Bethesda, Md. 2081 7

Managing the Clean room E nviron ment

Ju ly 31 , 1 99 1

- 3 4 2 -

The Cleanroom components are organized along the six technical l ines of software

speCification , software development , software correctness verificatio n , i ndependent soft­

ware product testing , software rel iabi lity measurement and statistical process control .

Software Specification

With the Clean room process, there is an i mplied requirement for correctness, completeness

and stabi l ity in the software specifications, so that the correctness of the software design

can be verified as it is elaborated. Cleanroom forces software design against the early

specification of requirements and, in that process, forces stabi lity and completeness in

these speCifications. The result is stricter accountabil ity between specifiers and developers

and the early introduction of a control led approach to stabi l izing the product requirements.

In the Cleanroom method , more formal notation is introduced for accu racy and to resolve

many of the issues which wou ld be subsequently raised by the software designer,

attempting to verify the correctness of a design . The specification content is broadened to

identify the packaging of software requirements i nto incremental releases and to establ ish

the rel iabi l ity (MTTF) targets for the product . Cleanroom centralizes project focus on the

software specifications as the sing le source document on which to base all software deSign

and all subsequent validation of requirements implementation .

Software Development

Cleanroom identifies rigorous and formal design as a necessary e lement for generating

software whose correctness can be verified . A design method [2] based on structu red

programming theory is recommended for Cleanroom use. This method defi nes a l imited

set of pri mitives for capturing design logic, defi ning software structure and organizing the

software's data. The pri mitives are used in a systematic and stepwise refinement of the

software requi rements and in the construction of a software design whose correctness can

be assessed and confi rmed at each step.

Software Correctness Verification

In the Clean room method , correctness is defi ned as the equivalence between a require­

ment and the design which supposedly implements the requireme nt. Designs are verified

Michae l Dyer

IBM Federal Sector Divisio n

Bethesda, Md. 2081 7

- 3 4 3 -

Managing the Cleanroom E nvironment

Ju ly 31 , 1 991

using the functional technique for correctness verification [3] , fi rst by the designer when

constructing a design and subsequently by i ndependent inspectors when reviewi ng the

design. Correctness proofs in the functional approach work off the design structu re rather

than the embedded application logic, which allow the same proofs to be used across al l

design levels. With some algebraic manipu lation , the question of correctness for a total

software product can be reduced to the su mmation of the correctness proofs for the

component parts.

Independent Software Product Testing

Software products are tested for two reasons - fi rst, to ensure that the software correctly

implements its design (structural testi ng) and, second , to ensure that the software satisfies

its specified requirements (functional testing) . Structural test ing is pri marily the responsi­

bi l ity of the software developer, whi le functional test ing is generally performed by an

i ndependent organ ization.

In the Clean room method , on ly fu nctional testi ng is performed since the correctness

verification techniques , woven i nto the formal design method , satisfy all goals defi ned for

structural testing . Functional test ing is sti l l required in the Cleanroom method for validati ng

the implementation of the original requirements and a statistical approach [4] been defi ned

and proven effective . Functional testing is driven by probabi lity distributions which are

defi ned against the requirements and general ly track requirements usage i n the software's

operating envi ronment.

Software Reliabil ity Measurement

Cleanroom defi nes software rel iabi l ity in terms of software mean t ime to fai lure (MTTF)

which is a more meaningful measure for the user, which g ives a positive qual ity indicator

(longer MITF is better) and wh ich can be esti mated prior to software delivery . When tied

to a statistical testing approach , MITF predictions duri ng software development can

accurately reflect subsequent operational experience.

Statistical Process Control

Michael Dyer

IBM Federal Sector Division

Bethesda, Md. 208 1 7

Managing the Clean room Environment

Ju ly 31 , 1 99 1

- 3 4 4 -

Cleanroom allows conti nuous process i mprovement through the effective use of rel iabi l ity

measurements taken during i ncremental re leases of the software. Typical ly, i ncremental

releases of software are staggered across a development schedu le, so that MTTF readings

from early releases can have dramatic impact on any combination of the specificatio n ,

development and test phases. To gauge where corrective action i s required i n the process,

the variance between the recorded and the target MTTF's can help identify what and how

much correction is needed.

CLEANROOM I NTRODUCTION STRATEGY

Introducing a software development method i nto an existing development environ ment is

not easy and, i n the case of the Clean room method, is fu rther complicated because it also

encroaches on the software specifier's and software tester's areas of responsibi lity. A

clearly stated set of objectives must be defi ned which identify where and how much of the

Cleanroom method is to be used. The plann ing for a particu lar software development

entai ls Clean room train ing , identifying a tai lored version of Clean room to fit the particular

development envi ronment and organizing checkpoi nts for re-evaluating decisions on

techno logy selections. The train i ng ensures a consistent level of understanding to plan the

integration of the Clean room ideas i nto an existi ng development envi ron ment and to

implement a problem solution. The successful Clean room project i ntegrates the ideas i nto

its envi ronment and does not try to revo lutionize its development process. The successfu l

Cleanroom project also g ives itse lf ample opportunity to change its process , as it gains

experience , rather than stick with ideas which are fai l ing for any number of reasons with in

the particu lar project environment.

Training in the Cleanroom Method

Training in the Cleanroom method is critical so that the project team has the depth of

technical knowledge to apply the component techn iques with conviction and effectiveness.

The train ing is also necessary for the team's assessment and decision on wh ich

components of the Clean room method to use , because of the problem characteristics or

Michael Dyer

IBM Federal Sector Division

Bethesda, Md. 2081 7

Managing the Cleanroom Environment

Ju ly 31 , 1 99 1

- 3 4 5 -

development environment. This train ing is best conducted in two steps, with formal

instruction on the technical ideas fol lowed by hands-on experience in applyi ng those ideas

to the project's particu lar problem.

The Clean room components to be covered i n th is trai n ing should include formal methods

for software requirements specificatio n , structured prog ramming practice , the functional

correctness mode l , statistical test methods, software rel iabi l ity measurement and statistical

process control . For each component , i n-depth train ing on the theory and practice should

be given to ensure that the selected method is u nderstood and can be appl ied by the whole

project team. In this process, aspects of a particular technique might have to be modified

to fit the particu lar environment or to conform to organizational or contractual constraints

and standards. In general , the detai ls , on which aspects of a given method should become

practice (assuming no loss of the kerne l idea) , tends to be less sign ificant than the early

establ ishment and consistent application of a practice. This should e l iminate the endless

debate on personal preferences with in the team and should ensure a more effective use

of the method.

Some of the Cleanroom techniques might be viewed as beyond the scope of the project

defi nition or the abi lities of the project team . In that case , serious consideration should be

given to deferring the introduction of those techniques unti l a later project or phase of the

current development.

I n this train ing , formal instruction should be augmented with the attempted use of a

particular method in solving the problem at hand. Each project member should have the

opportunity to use the method, to decide its effectiveness to his assignment with in the

project and to make his suggestions on project practice. For the requirements specifiers

and software developers, the hands-on experience should cover the specification , design

and verification of some part ofthe top leve l design forthe problem solution . For the software

testers, the hands-on experience should include the attempted defi n ition of a top level

structure for the statistical data base to be used for the project's test sample generation.

The objective of the hands-on experience is to confi rm that the particular techniques can

be used for the application and by the project personnel . This experience is necessary for

organizing a tai lored version of the Clean room method to be used on a project.

Michae l Dyer

IBM Federal Sector Division

Bethesda, Md. 2081 7

- 3 4 6 -

Managing the Clean room Envi ronment

July 31 , 1 99 1

Selecting the Cleanroom Components for a Project

Clean room is not an al l-or-nothing method for software development but rather a col lection

of integrated components, which are i ntended to be used as a un it but can also be effectively

used, i ndividually or in combination . When starting a new project, a decision should be

made on where the project should enter the C leanroom process. For example , if measuring

and using software MTTF is a critical requirement , then implementing the complete

Clean room method should be seriously considered. Statistical testing should be viewed

on its own merits as a functio nal test candidate, which can and has been used without the

other Cleanroom components. Verification based inspections can be i ntroduced into most

software development processes, as long as software design is based on structured

programming. Current Clean room experience reflects positive resu lts with different

approaches to i ntroducing the Clean room method i nto a development organization and

then evolving into the acceptance and use of the total method.

Because of its breadth , the Cleanroom method lends itself to an incremental i ntroduction

i nto a software development envi ronment, where , i n any given instance , o n ly the techniques

appropriate to a particu lar problem and a particu lar project team are selected and used.

Force fitti ng a techn ique into a development situation is usually detrimental both to the

success of the project and to the acceptance of the Clean room method with in the

development environment.

Planning the Introduction of Clean room

Adequate planning for the introduction of the Clean room method is critical to ensure against

the potential for a project disaster, caused by the unwise or unsuccessfu l adoption of a

particu lar Clean room component. Project managers are encouraged to establish mi le­

stones with in the project schedules at which the progress of the Cleanroom technology

transfer can be statused and assessed.

The number of mi lestones and thei r placement with in a schedu le wi l l vary from project to

project but, as a general rule , should appear frequently i n the early part of the project

schedu le. A general rule of thumb is to schedu le the in itial mi lestones for each decision i n

Michae l Dyer

IBM Federal Sector Division

Bethesda, Md. 2081 7

- 3 4 7 -

Managing the C leanroom E nvironment

Ju ly 31 , 1 99 1

the fi rst two-three months of a project , since these decisions shape the development

process. Subsequent mi lestones for the particu lars on the various decisions and for the

necessary support (train ing , tools, consulting) should be schedu led in the fi rst six months.

A specific goal should be defi ned for each mi lestone with a quantification of the technology

transfer to the particular project. Project management should judge the prog ress being

made in transferring the technology and decide whether changes are needed (eg . more

train ing on specific techn ical topics) or whether the techno logy transfer should be stopped.

In this latter case , the plan for reverti ng back to previously used methods should have

been worked out, so that the recovery can proceed as effortlessly as possible. The planned

schedule should contai n sufficient flexibi lity to ensure the t ime and the resou rces to

implement the recovery.

Generally, technology transfer would address developing the requirements specification

with a formal method , i ntegrating the functional correctness model i nto the baseli ne formal

design method , el imi nating development testi ng from the software process and imple­

menting verification based i nspections. From a test and rel iabi l ity perspective , the transfer

would address software testing with statistical ly representative user i nputs and the

esti mation of software MTIF on a conti nuous basis during development. For each item,

appropriate mi lestones should be defi ned to identify what was to have occurred , how

success wou ld be measured , what forward plan was to be activated , what tolerances on

successfu l completion were acceptable and what recovery plan would be i mplemented i n

the unsuccessfu l case.

Mi lestones for Formal Specification Methods

For formal requi rements specification , an in itial mi lestone might be the completion of a top

level software product specification , prepared by the lead engineer(s) . A subsequent

mi lestone might address the e laboration of the next leve l (s) of specification for the

components of the software architecture . The i ntent of these additional mi lestones wou ld

be to involve all project software specifiers i n the use of the formal specification method ,

to ensure that the specifier team can use the formal method and that the software

developers and testers can understand thei r workproducts.

Michael Dyer

IBM Federal Sector Division

Bethesda, Md. 2081 7

- 3 4 8 -

Managing the Cleanroom Envi ronment

Ju ly 31 , 1 99 1

The mi lestones would provide project management with the opportunity to assess whether

the formal specification method could be used for the particu lar problem and by the

particu lar staff. If the defi ned workproducts were not completed or un intel l ig ible to the

developers, testers and customers , then the effectiveness of the technology transfer would

be suspect and some change in requirements specification is needed. Before revert ing

back to natural language specifications, the adequacy of the in itial train ing , the avai labi l ity

of expert consultation and support tools and the levels of actual accomplish ment should

be reviewed. Since the specification is key to the project start-up, problems with applyi ng

the formal methods for specifications must be resolved , early in the schedu le, and can not

be allowed to l inger into development. Either corrective steps are taken to get formal

specifications on the project or the project reverts to established (ie . natural language)

specification practice .

Mi lestones for the Functional Correctness Model

For integrating the functional correctness mode l with the exist ing design practice , an in itial

mi lestone might be the completion of a verified top leve l software design , which wou ld g ive

the fi rst leve l decomposition of the specifications for the software architectu re . The

description might be a few pages of design language description , prepared by the project's

lead designer(s). A subsequent checkpoint mig ht be the completion of verified designs for

the next one or two levels of decomposition . The objective for this mi lestone wou ld be to

g ive al l the software designers on the project and opportu nity to apply the fu nctional model

in construct ing a verified design .

The mi lestones would provide project management with the opportunity to assess whether

the design and correctness ideas could be appl ied by the lead and other software designers ,

in developing a solution to the particu lar problem. I f t he designs can not be successfu lly

completed and verified to eve ryone's satisfaction by the planned mi lestones, then the

effectiveness of the in itial train ing in the fu nctional correctness model , the completeness

of the requirements specification and the commitment of the staff should be re-evaluated

before proceeding. Any early problems with applyi ng the correctness ideas need to be

resolved with corrective steps (eg . additional consult ing support , the use of analyzers to

Michael Dyer

IBM Federal Sector Division

Bethesda, Md. 2081 7

- 3 4 9 -

Managing the Cleanroom Environment

July 31 , 1 99 1

guide verification , etc. } . The alternative wou ld be to stay with the established design

practice , which probably means planning for more formal i nspection and development

testing at the completion of design .

Mi lestones for El iminating Developer Testi ng

For el iminating development testing , an in itial mi lestone might be the completion of the

defi nition and planning of the l ibrary and configuration management procedures to support

the de livery of code prior to its execution . A pre l iminary plan would be acceptable

documentation for this mi lestone which wou ld be prepared jointly by the lead software

developer(s} and tester(s}. A subsequent m i lestone might be the defi nition of inspection

plans and mi lestones to ensure quality code delivery and of development procedu res and

tools to ensure that the design and code can created in a non-execution envi ronment.

The mi lestones wou ld provide project management with the opportunity to assess whether

the project is serious about developing software without development testi ng and has put

in place the tools and discipl ines to facil itate this development approach. If satisfactory

definition and planning is not completed by these mi lestones, then the commitment of the

project to this objective should be reviewed. Testing by developers is a tradition which wi l l

not go away by decree but needs effective planning for i t to happen (eg . separating the

design and development from the target computer, l imiti ng target computer access to

testers, al locati ng a percentage (25-35%) of developer ti me to inspections, defi n ing

handover tests for acceptance of software into test , etc.) . Un less this early planning and

set-up is accomplished, the development will start on the wrong foot and the project

commitment to this objective wi l l probably evaporate. Either the appropriate development

envi ronment is organized to support development without developer testing , or the project

should revert to its established development practice , maki ng the necessary adjustments

to accommodate developer testing.

Mi lestones for Verification Based Inspections

For introducing verification based inspections, an in itial mi lestone might be the defi nit ion

and planning of the inspection schedu les, analysis tool and inspection format. A pre l iminary

plan wou ld be acceptable for this mi lestone, which was prepared by the lead software

Michael Dyer

IBM Federal Sector Division

Bethesda, Md. 2081 7

- 3 5 0 -

Managing the Cleanroom Environment

Ju ly 3 1 , 1 99 1

developer(s} . Subsequent mi lestones might be the completion of the requirements

specification for the analysis too l , of the veri fied top level design for th is tool and of the

prel iminary plan for testing the tool . This would be another opportunity to involve a

cross-section of the project in applyi ng the selected Cleanroom methods.

The mi lestones wou ld provide project management with the opportunity to assess whether

adequate preparation is being made for introduci ng the verification based inspection into

the development process (eg . ensuring the al location of sufficient person nel time, having

the analysis tool avai lable when needed, worki ng out the formats ofthe i nspection meetings,

etc.) . If there is project difficu lty in completi ng these mi lestones, then the interest and

commitment to introducing this new method should be re-examined and resolved (eg .

subcontracti ng the analysis tool development) . Without the early defi nit ion and planning,

there wi l l not be a smooth or problem free i ntroduction of the verification based inspection .

Either the necessary t ime is taken early in the project or the project should stay with its

established formal i nspection practice .

Mi lestones for Statistical Testing

For introducing statistical test methods, an in itial mi lestone might be the defi nition of

database organization , for generating the test samples. A pre l iminary description would

be acceptable that defi nes a strategy for g rouping the software inputs (eg . t ime, syntax ,

safety , etc.) and for organizing a selection h ierarchy (eg . t ime periods, severity leve ls, etc.) .

The description wou ld be prepared by the lead test engi neer(s} . Subsequent mi lestones

might be the defi nition of the top few levels of probabi l ity distributions, the se lection (or

defin it ion) of the generator support software and the encoding of an in itial set of database

entries. These latter mi lestones would involve a larger segment of the software testers

and ensure acceptance of the statistical approach by the software testers.

The mi lestones wou ld provide project management with the opportunity to assess whether

a statistical approach to test sampling can be defi ned by the test organization and whether

the mechanics of sample generation have been worked out. If there is project difficu lty in

meeting these mi lestones, then the applicabi lity of statistical test to the particu lar problem

needs to be reexamined and modified forms of statistical testing introduced (eg . multi ple

Michael Dyer

IBM Federal Sector Division

Bethesda, Md. 2081 7

- 3 5 1 -

Managing the Clean room Environment

Ju ly 31 , 1 99 1

user envi ronments defi ned , exist ing traffic samples used i n l ieu of database defi nit ion ,

etc. } . Either the effort i s spent o n defi n ing a statistical approach o r the project reverts to

its established practice for requirements validation .

Mi lestones for Software MTIF Prediction

For integrating software MTIF prediction , an i n it ial mi lestone might be the se lection of

appropriate statistical models and the defi nit ion of a predict ion procedu re . A pre l im inary

plan prepared by the lead software tester(s} would be acceptable but would have to be

integrated with a statistical test ing plan. Subsequent mi lestones might i nclude the

instal lation and checkout of mode ls, the defi nit ion of model validation procedures and the

defi nit ion of MTIF prediction and assessment reports.

The mi lestones wou ld provide project management with the opportunity to assess whether

the project was set-up for MTIF calcu lations (ie . test i nterface , tools and procedures) and

had defi ned a project role for software MTIF (eg . basic quality measure , contro l in a

feedback process , etc.) . If there is difficu lty i n complet ing the mi lestones , there should be

a re-evaluation of the project's abi lity to do statistical predict ion (ie . statistics background

of staff, avai labi l ity of mode ls, etc.) , of bott lenecks from the test ing side (ie. statistical test

plans , tim ing un its , i nterfacing , etc.) and of the project's i nterest and commitment to doing

someth ing with the MTIF data. The fallback position would be use more tradit ional quality

measures and not bother with statistical model ing .

CLEANROOM PROJ ECT MANAG E MENT

Project management with the Clean room method is not measu rably different for project

management when more conventional methods are used. One difference would be the

tracking of the technology transfer mi lestones which provide project management with the

opportunity to assess the introduction of the Clean room component techn iques, to judge

thei r acceptance by project staff and to measure thei r contribut ion to project productivity

and quality goals.

Michael Dyer

IBM Federal Sector Division

Bethesda, Md. 2081 7

- 3 5 2 -

Manag ing the Cleanroom Environme nt

August 1 , 1 99 1

A second difference is the public visibi l ity given to software qual ity by the early p lacement

of software under formal configuration control and the conti nuous estimation of the software

MTTF during development. Typical ly, software goes through various leve ls of review and

inspection and various steps of developer testi ng , before it goes u nder configuration

management. The theory is that enough effort (people and methods) has been given to

removing errors , that the software is reasonably stable (small percent of remai n ing errors)

and that the software can be given public (outside the project and, possibly outside the

company) scruti ny without embarrassment. I n the Clean room process, software is placed

under configu ration management prior to its fi rst executio n , which requires higher

confidence and commitment from management in the Clean room's zero defect design

strategy.

A th ird difference is the leadership and conviction that must be shown by project

management i n challeng ing accepted development practices and/or myths (eg . un it testing

by developers , the ineffectiveness of randomized testing , the absurdity of software MTTF,

the advanced mathematical backgrou nd requ i red for software verification and the futi lity

of formal methods with changing requirements). Clean room offers cou nter i ntuitive ideas

and methods which can and have been demonstrated to be practical and usable with in

the typical software development environment. Project management must ensure that staff

skepticism in adopting these methods is overcome by providi ng the train i ng , tools and

consultation support to faci l itate thei r effective use.

A fourth difference is to manage process i mprovement i nto the development effort. This

requires observation and measurement of the process throug h the MTTF statistic,

recognizing problems flagged by a constant or decreasi ng MTTF statistic and ensuri ng

process correction via an increasing MTTF statistic. The i ncremental development strategy

affords the measurement opportunities from which process corrections (eg . i ncreased

specification formality, broader participation in verification based inspections, etc.) can be

defi ned for subsequent i ncrement development and tracked for improvement effectiveness.

The Cleanroom method provides a un ique capabi lity to project management for placing

thei r software development under statistical quality control .

CLEAN ROOM I M PACT ON THE SOFTWARE PROCESS

Michael Dyer

IBM Federal Sector Division

Bethesda, Md. 2081 7

- 3 5 3 -

Managing the Cleanroom Environment

Ju ly 31 , 1 99 1

------------ --- -- -----

The i ntroduction of the Clean room method would impact most steps i n the software

development life cycle , as shown i n figure 1 which summarizes the role of the life cycle

steps and the changes resulting from Clean room.

SUMMARY O F CLEANROOM IMPACTS

ON A DEVELOPMENT LIFE CYCLE MODEL

REQUIREMENTS SPECIFICATION
Function and Performance

but with
Usage and Build Statistics

SOFTWARE DESIGN/IMPLEMENTATION
Incremental Software Development

but with
Correctness Verification not Unit Test

INDEPENDENT SOFTWARE TEST
Integration & Test of Released I ncrements

but with
Representative Statistical Usage Samples

SOFTWARE ACCEPTANCE
Demonstrated Function and Performance

but with
Certified Software MTTF

Figure 1

Impacts on Software Specification

Software specifications defi ne functional requirements and describe performance budgets

that constrain execution time, size , etc. and environmental constraints such as i nterfaces,

modu larity, documentation , packaging and standards consideratio ns.

With Clean room, the software specification is written with more formal notation to support

correctness verification . Several acceptable methods are available such as box structuring

techniques, formal specification languages (Z, VDM, etc.) , and problem specific grammars.

These formal methods force a closer analysis of the requirements and tend to min imize

ambiguity , i nconsistency and i ncompleteness in the resultant software specification .

Michael Dyer

IBM Federal Sector Division

Bethesda, Md. 2081 7

- 3 5 4 -

Managing the Cleanroom Envi ro nment

Ju ly 31 , 1 99 1

In addit ion to more formal specifications, Clean room forces the consideration of data on

software usage and software construction to drive statistical test ing. This i ncludes the

identification of software i nputs and thei r expected usage probabi lities to structure the test

data bases. Any i ncremental release strategy must be elaborated to factor the planned

avai labi l ity of the software function i nto the test plann ing .

Impacts o n Software Design

The major design i mpact is the i ntroduction of functional correctness verification i nto the

design process. The Clean room design ethic is one of requirements specificatio n , fol lowed

by design of a solution to the specification , fol lowed by verification of the equivalence

between the design and requirements. Verification is i ntegral to the design construction

and imposes a control on the designer which gates the refinement of the software speci­

fication .

A second impact i n the design step is the i ntroduction of verification based i nspections to

provide an i ndependent confi rmation of the design correctness. The verification based

inspection bui lds on the formal i nspection practice [5] but re-orients the i nspect ion to

correctness confi rmation rather than error detection. The reo rientation is achieved through

the use of design language analyzers which can determine the structure of the design and

formu late the sequence and content of the questions to be addressed in i nspections.

Impacts on Software Implementation

The impact to software implementation from the Cleanroom method wi l l depend on the

approach to software design . If design and verification are performed to fu ll detail in the

design step, then implementation becomes a transliteration of design notation into pro­

g ramming language notat ion.

An equally acceptable approach is to split the design refinement between the use of design

notation and the use of the implementation programming language. The i mplementation

Michael Dyer

IBM Federal Sector Division

Bethesda, Md. 2081 7

Managing the Cleanroom E nvironment

July 31 , 1 99 1

- 3 5 5 -

impact is that the software coding wou ld now be performed stepwise, with each step verified

for correctness and with verification based code i nspections performed to confi rm cor­

rectness.

Impacts on Software Developer Testing

The impact to this step is that it is no longer performed in the Cleanroom method. Close

adherence to functional correctness verification ensures that al l of the error detection

situations addressed by developer testing are addressed in verification . With the Clean­

room method, the on ly reasons for software engineers to execute thei r software wou ld be

to check the feasibi l ity or performance of newly defi ned algorithms, to exercise support

software faci lities and to confi rm operating system services.

Impacts on Independent Testing

The Cleanroom method does not preclude testing because of software correctness veri ­

fication , but rather rel ies on independent testi ng to validate that the software requirements

were correct ly implemented . Clean room impacts traditional testing by introducing statistical

techniques. This impact on the tester has proven to be one of the harder obstacles to

overcome in obtain ing acceptance of the Clean room method. At the same time, statistical

test techniques have the g reatest potential for significant savings in the si ngle most

expensive part of software development.

CLEANROOM I MPACT ON THE SOFTWARE PRODUCT

Work on the Clean room method was origi nally started to improve the quality of delivered

software and in itial experience indicates that this purpose has been met. The qual ity

improvement can be observed in quantitative terms from measures of software defects

and in qualitative terms from improved software specifications , simpler software designs ,

faster error iso lation and repai r and fewer reported post-de livery problems.

Impact on Software Defect Rates

Michael Dyer

IBM Federal Sector Division

Bethesda, Md. 2081 7

Managing the Cleanroom Environment

July 31 , 1 99 1

- 3 5 6 -

To get some feel for the levels of quality improvement being realized with the use of

Clean room, two snapshots of reported data are provided. The second version of the

COBOL Structuring Faci l ity [6] was developed in five software increments. Error rates

were measu red from start (fi rst software execution) through the completion of i ndependent

statistical testing and ranged from 1 .4 to 5.7 errors per thousand l ines of source code

(ksloc), with an average of 3.4 errors/ksloc.

A simi lar picture of quality improvement was seen in the application of the Clean room

method in the Software Engineering Laboratory (SEL) at NASA Goddard [7] . Error rates

were measu red from the start (again fi rst software execution) through the completion of

independent statistical testing and averaged 3.3 errors per ksloc. This compared very

favorably to the 6 errors per ksloc which was the average experience of simi lar software

developments in the SEL environment. I n both the COBOL and SE L cases , the reported

post-delivery errors were extremely small and measured in fractions of an error per ksloc.

Impact on Software Design Simpl icity

One resu lt experienced in al l uses of the Clean room method was a demonstrated simplicity

in the designs which were produced. Desig ners tended to be conservative in thei r designs.

The result was a software design which satisfied the requirements (no less but no more)

and used on ly known and easy to verify design ideas (noth ing complicated nor exotic) .

This was seen repeatedly in the verification based inspections where 90% or more of a

design cou ld be confi rmed in a straightforward manner and where design pieces, whose

correctness cou ld not be proved simply , were general ly returned for further simplification .

The same simplicity was evident during the independent testing of the software where it

cou ld have been expected that the developer would need to execute the software to

recreate error conditions and diagnose the source of fai lures. This turned out not to be the

case [6,7] and developers were able to diagnose problems di rectly from thei r l ist ings of

software statements. In projects [7] , where the development organ ization had h istorical

data on the time spent in finding and fix ing errors, the reduction in effort was l ike an order

Michael Dyer

IBM Federal Sector Division

Bethesda, Md. 2081 7

Managing the C lean room Envi ronment

Ju ly 3 1 , 1 99 1

- 3 5 7 -

of magnitude, with repai r cycles going from months and weeks to hours and days. This

reduction is particularly remarkable since the software was always under formal configu­

ration management, which imposed procedures and regu lations on the fix and repair cycle.

Impact on Software Development Productivity

Software quality was the underlying objective of the work in developi ng the Clean room

method. The added care in developing correct designs and the verification emphasis on

inspections were new and different kinds o f work, which were originally thought to add to

the software design. Simi larly, the added analysis in defi n ing probabil ity distributions and

bui ld ing statistical data bases for test sampl ing was o riginally thought to add some delta

to the test effort.

A surprising resu lt of the Cleanroom work is that software productivity did not go down

and, in fact , i ncreased in several cases. From the development side , design simplicity and

the complete el imination of developer tester resu lted in reduced effort that more than

compensated for the work to integrate correctness into the software designs. In the case

of the COBOL S/F and NASA SEL projects [6,7] the reported productivities were in the

range of 750 l ines of source code per labor month , which is three to four t imes higher than

the average productivities, reported in the software l iterature .

Michael Dyer

IBM Federal Sector Division

Bethesda, Md. 2081 7

Managing the Clean room Environment

July 31 , 1 99 1

- 3 5 8 -

REFERENCES

(1) M .Dyer

The Clean room Approach to Qual ity Software Development

John Wiley & Sons, Inc January 1 992

(2) R.C.Linger, H .D .Mi l is and B. I .Witt

Structured Programming : Theory and Practice

Addison-Wesley 1 979

(3) H . D. Mi l is

The New Math of Computer Programming

Comm ACM Vol . 1 8 No. 1 1 975

(4) M.Dyer

Statistical Testing : Theory and Practice

Tutorial 7th International Software Test ing Conference 1 990

(5) M.E . Fagan

Design and Code Inspections to Reduce Errors i n Program Development

IBM Systems Journal Vol. 1 5 No.3 1 976

(6) R.C.Linger and H . D.Mi l is

Case Study in Cleanroom Software Development

COMPSAC '88 Proceedings 1 988

(7) S.Green , et al

The Cleanroom Case Study in the SEL

NASA Goddard SEL Series SEL-90-002 1 990

Michael Dyer Manag ing the Cleanroom E nvironment

IBM Federal Sector Division

Bethesda, Md. 2081 7

- 3 5 9 -

Ju ly 31 , 1 991

MANAGING IN THE CLEAN ROOM ENVIRONMENT

Prepared for

9th Pacific Northwest Software Quality Conference

Portland, Oregon

October 7,1 991

Michael Dyer

IBM Federal Sector Division

Bethesd. Md. 208 t 7

WHAT IS THE CLEANROOM METHOD

Technical and Organizational Approach to

Developing Software with Certified Reliability

Objectives

Focus on User Driven Definition for Reliability

Release Software with Known Reliability

Put Software Developed under Statistical Control

DISCUSSION OUTLINE
Overview of the Cleanroom Method

Strategy for Introducing Cleanroom

Clean room Project Management

Impacts on Software Process and Products

Lessons Learned

COMPONENTS OF THE CLEAN ROOM METHOD

3 6 0 -

Software Specifications

• Formal Notation for Function and Performance

• Usage Distributions and Construction Plans

Software Development

• Rigorous and Formal Design Method

Software Correctness Verification

• Correctness Woven into Design Process

• Verification Based Inspection Process

COMPONENTS OF THE CLEAN ROOM METHOD

Independent Software Product Testing

• Statistically Based Testing

• Test Samples of Representative User Inputs

Software Reliability Measurement

• Defined as Software Mean-Time-To-Failure (MTTF)

Statistical Process Control

• Continuous Process Improvement

• Driven by Software MTTF Projection

PROFILE OF EXPERIENCE WITH CLEAN ROOM METHOD
(Percent Of Cleanroom Projects USing Component Technique)

Formal Basehne Correc1ness No Unit StatistICal MITF Average

SpecdcatlOn Destgn Verification Test Testing PredlClIon Total Usage

Completed IBM 33 1 00 66 PrOlects 1 00 66 50 69

Completed E){lernat

PIOff!C1S 0 1 00 0 1 00 1 00 0 50

Current IBM

Projects 80 1 00 1 00 1 00 40 40 76

Cunenl E�emal

Protects 1 00 1 00 50 1 00 50 0 66

3 6 1

CLEAN ROOM IMPACTS
ON A DEVELOPMENT LIFE CYCLE

REQUIREMENTS SPECIFICATION
Function and Performance

bul wilh
Usage and Build Statistics

SOFTWARE DESIGNIIMPLEMENTATION
Incremental Software Development

bul wllh
Correctness Verification not Unit Test

INDEPENDENT SOFTWARE TEST
Integration & Test of Released Increments

bul wllh
Representative Statistical Usage Samples

SOFTWARE ACCEPTANCE
Demonstrated Function and Performance

bul wllh
Certified Software MTTF

STRATEGY FOR INTRODUCING CLEAN ROOM

Training in the Cleanroom Method

• Formal SpeCifications and Correctness Verification

• Statistical Testing and Reliability Modeling

Tailoring Cleanroom to Development Environment

• Expanding rather than Replacing Existing Process

• Considering Needs of Project and Staff

Planning the Inroduction of Cleanroom

• Checkpoints for Assessing Technology Transfer

• Introduction of Support Tools

CLEAN ROOM WORKSHOPS
Mixture of Theory and Practice

Selection of Three Forty Hour Courses

• Formal Specifications · Box Structure Method

• Formal Design with Rigorous Verification

• Software Certification · Reliability and Test Methods

Prerequisites

• Attendance by Project Teams

• Set Theory, Logic and StatistiCS Background

ASSESSING TECHNOLOGY TRANSFER
Definition of Project Milestones

• Minimum 01 Two Per Technology

• Scheduled in First 3·6 Months 01 Project

PUrpose of Milestones
• Ouantilied Assessment 01 Technology Acceptance

• Process Changes to Improve Technology Transler

• Technology Work·Arounds to Ensure ProjeCt Completion

candidate Assessments
• Formal SpecifICation Methods

• Functional Correctness Model lor Software Verification

• Elimination 01 Developer Testing Steps

• Verilication Based Inspections

• Statistical Based Testing

• Software MTTF Prediction

3 6 2

SOFTWARE SPECIFICATION WORKSHOP
TYPICAL CURRICULUM

Problem Analysis

• F unction Decomposition

• Function Allocation

• Requirements Traceability

Box Structure Analysis

• Design PrinCiples

• Black, Clear and State Boxes

Specification Preparation

• Inspections and Reviews

• Incremental Development Plans

• Usage Distributions

SUGGESTED MILESTONES FOR
FUNCTIONAL CORRECTNESS TRANSFER

Initial Milestone

• Completion of Verified Top Level Design Which

Covers First Level of Requirements Decomposition

• Prepared by Project's Lead Designer(s)

Subsequent Milestones

• Completion of Verified Designs for Next

One to Two Levels of Requirements Decomposition

• Prepared by All Project Designers

CLEANROOM PROJECT MANAGEMENT

No Change In Schedule and Resource Management

Cleanroom Unique Considerations

• Active Assessment of Technology Transfer

• Public Visibility with Early Software CM

• Leadership in Overcoming Skepticism on Technical Ideas

(Correctness. No Debugging. Statistical Test. MTTF)

• Commitment to Statistical Process Control

CLEAN ROOM PRODUCT IMPACTS
Product Quality Improvement

• More Prevention with Correctness Model

Simpler Designs with Fewer and More Easily Found Errors

• Earlier Detection - 90. % Errors Removed Prior to Test

• Order of Magnitude Reduction in Errors Found in Test and Field

(3lksloc during Test and < 1 /ksloc post delivery)

Development Productivity Improvement

• Added Design Care Offset by Reduced Testing

(2:1 Productivity Improvement Realized)

• Near Zero life Cycle Maintenance

3 6 3

CLEAN ROOM PROCESS IMPACTS
Improved Specifications with Formal Methods

Correctness Model Integrated into Design Practice

• Simplified Implementation fro", Design Attention

Developer Testing Replaced by Verification

Testing with Representative Usage Samples

Software MTTF for Tracking Product Quality

LESSONS LEARNED
About the Cleanroom Method

• Practical across Range of Applications

• Brings Formality to Software Development

Mathematics and Functional Correctness to Design

Statistics and Software MTTF to Test

• Puts Quality Focus on Customer Interests

About the Application of Clean room

• Tailorable to Existing Development Environments

• Usable by Software Practioners with Training

Hesitant Acceptance by Developers

Reluctant Acceptance by Testers

• Provides Both Quality and Productivty Improvement

- -- -- -------

