
NINTH ANNUAL PACIFIC NORTHWEST

SOFTWARE QUALITY CONFERENCE

October 7-8, 1991

Oregon Convention Center

Portland, Oregon

Permission to copy without fee all or part of this material
except copyrighted material as noted, is granted provided that

the copies are not made or distributed for commercial use.

Pacific Northwest Software Quality Conference

TABLE OF CONTENTS
Preface iii

Conference Committee i v

Presenters vi

Exhibitors : vii i

Keynote
"Implementing Software Engineering in IBM"]

Alfred M. Pietrasanta, Independent Consultant

Management Track A

" Comparing the Effectiveness of Software Development Paradigms:
Spiral-Prototyping vs. Specifying 2

William Junk & Paul Oman, University of Idaho and Grant Spencer, Varian Medical Equipment

"Rapid Prototyping & Software Quality: Lessons From Industry"]9
V. Scott Gordon & James M. Bieman, Colorado State University

"Implementing a New Software Development Process" 30

Michael Perdue, Sun Technology Enterprises, Inc.

" CMSYS - A Database System for Metrics Collection" 3]
Geoff J. Flamank, Dynapro Systems, Inc.

"High Integrity Software Standards Activities at NIST" 47

John C. Cherniavsky, National Science Foundation; D. Richard Kuhn & Dolores Wallace,
National Institute of Standards & Technology

Management Track B

"Making Quality Come Alive: Getting It To Stick" 62
Steve Bender, The Quality Connection

"SQA Standards & Total Quality Management" 75
Caroline E. Wardle, National Science Foundation; Dolores R. Wallace, National
Institute of Standards & Technology; Reza Khorramshahgol, Bonnie Kaplan & Eugene
G. McGuire, American University

"In The Eye of the Storm" 94
Noelle Evans & Mark Seyler, Mentor Graphics Corporation

i

"Experiences with Defect Analysis" .. 108
Brian K. Casey & Jan L. Sun, Bellcore

"Methods & Mechanics of Creating Verifiable User Documentation" 123
Andrew Oram, Hitachi Computer Products (America), Inc.

Technical Track A

"Experience with the Cost of Different Coverage Goals for Testing" 147
Brian Marick, Motorola, Inc.

"On the Relative Strengths of Data Flow and Mutation Based Test
Adequacy Criteria ... 165

Aditya P. Mathur, Purdue University

"Testing a Graphical User Interface, Experiences with Automation" 182
Nancy K. Winston & Tamara Baughman, Mentor Graphics Corporation

" User Interface Evaluation in the Real World: A Comparison of Four Approaches" 205
Robin Jeffries, Hewlett-Packard Labs

"Compiler Support for Program Testing on MIMD Architectures" 221
A.A. DeMilio, E.W. Krauser & A.P. Mathur, Purdue University

"Preliminary Observations On Program Testability" ... 235

Jeffrey Voas, NASA Langley Research Center

Technical Track B

"MOTHER: A Test Harness for a Project with Volatile Requirements" 248
Joe Maybee, Tektronix, Inc.

"The T90 Project: Self-restarting Automated Software Testing on Multiple Hypercube
Architectures" . 283
Marc Baber, Walt Harrison, Gary Hartman & Debra Lee, Intel Supercomputer Systems Division

"Predicting Error-Prone Modules in a Large Evolutionary Development
Environment" ... 303

James S. Collofello & Eric Wagner, Arizona State University

"A Systematic Approach to Regression Testing" .. 309
J. Hartmann & D.J. Robson, University of Durham, UK

"On Testing Expert Systems Software" ... 324

Guil lermo A. Francis I I I & Andrew H. Sung, New Mexico Tech

"Managing in The Cleanroom Environment" .. 341
Michael Dyer, IBM Federal Sector Division

Proceedings Order Form Back Page

ii

PREFACE

Elicia M. Harrell

Welcome to the Ninth Annual Pacific Northwest Software Quality Conference. It is rewarding to know as
we approach our first decade of successful Software Quality Conferences, that we have been able to
provide a forum and environment for software professionals to meet, share information, learn new ideas
and acquire new skills.

As software grows more complex and becomes the key component of systems, the ability to produce
reliable software is more in demand. To achieve high quality and reliabil ity, practitioners must rely on
concise and highly evolved development and evaluation processes to complete their jobs. Our 1991
keynote speaker, Alfred M. Pietrasanta, addresses his insights to the evolution of the software process,
drawn from many years of experience establishing and directing software processes for IBM.

We are pleased to publish these Proceedings which contain the papers presented during the technical
program. The papers represent the current thinking and practice from the United States, Canada and the
United Kingdom. Nineteen papers were selected from the abstracts received from our Call for Papers. An
additional four speakers representing experts in the industry have been invited to share their experience
and expertise during our technical sessions.

I would like to thank Hilly Alexander and Dick Hamlet, the Program Committee Co-Chairs, for the hard work
it takes to pull the program together. Their work is the basis for this Conference. Many thanks also to the
members of the Program Committee for their time, energy and intelligence in refereeing the abstracts and
papers. The Program Committee is the foundation of the process for putting together the Conference.

I would like to thank the remaining members of the full committees, whose names are listed in the next
section, who contributed their ideas, effort and attendance to many meetings to make this Conference a
success.

Final ly, I want to express special thanks to Terri Moore at Pacific Agenda for being able to handle the
organization and administrative tasks and at the same time, keep the committees on track and moving
forward.

iii

CONFERENCE OFFICERS/COMMITTEE CHAIRS
Elicia Harrell - President/Chair
Intel Corporation

Steve Shellans - Vice President; Keynote
Tektronix, Inc.

Lowell Billings - Treasurer; Birds of a Feather
Inf otec Development

Debra Lee - Secretary; Workshops
Intel Corporation

Dick Hamlet - Program Co-Chair
Portland State University

CONFERENCE PLANNING COMMITTEE

Sue Barlett
Mentor Graphics Corp.

Sandhi Bhide
Mentor Graphics Corp.

Kit Bradley
Canyon Crest Technology

Ann Bynum
Intel Corp.

Margie Davis
ADP Dealer Services

Dave Dickmann
Hewlett Packard

Cynthia Gens

iv

Hilly Alexander - Program Co-Chair
ADP

Paul Blattner - Exhibits
Quality Software Engineering

GW. Hicks - Publicity
TSSI, Inc.

Brian Johnston - Software Excellence Award
Software Process Consultants

Micheal Green

Gary Hanson
Kentrox Industries, Inc.

Warren Harrison
Portland State University

Connie Ishida
Mentor Graphics

Mark Johnson
Mentor Graphics

Bill Junk
University of Idaho

Ray Lischner
Mentor Graphics

Peter Martin Eric Schnellman
Apple Computer CDP

Howard Mercier Bill Sundermeier
Intersolv Cadre Technologies

Shannon Nelson Karen Ward
Intel Corp.

Dave Patterson Donald H. White
Mentor Graphics

Misty Pesek Nancy Winston
Tektronix, Inc. Mentor Graphics

Ian Savage Barbara Zimmer
CFI Hewlett Packard

v

Marc H. Baber
Intel Corporation
15201 N.W. Greenbrier Pkwy. C01-01
Beaverton, OR 97006 .
(503) 629-7697

Stephen A. Bender
The Quality Connection
4 Old Vly Road
Schenectady, NY 12309
(518) 452-8166

James M. Bleman
Computer Science Department
Colorado State University
Fort Collins, CO 80523
(303) 491-7096

Brian Casey
6 Corporate Place
PYA1E-229
Piscataway, NJ 08854
(906) 699-8988

John C. Cherniavsky
CISEjOCDA Rm 304
NSF
1800 G Street NW
Washington, DC 20550
(202) 357-7349

Dr. James S. Collofello
Computer Science Department
Arizona State University
Tempe, AZ 85287-5406
(602) 951-0596

Michael Dyer
IBM Federal Sector Division
6600 Rockledge Drive
Bethesda, MD 20817
(301) 493-1490

PRESENTERS

vi

Noelle Evans
Mentor Graphics Corporation
8005 S.W. Boeckman Road
Wilsonville, OR 97070-7777
(503) 685-7000

Geoff J. Flamank
Dynapro Systems Incorporated
800 Carleton Court
New Westminister
British Columbia, Canada V3M 6L3
(604) 521-3962

Guillermo A. Francia III
P.O. Box 2335 CS
Department of Computer Science
New Mexico Tech
Socorro, NM 87801
(505) 835-5209

Jean Hartmann
Science Laboratories
University of Durham
Durham
DH1 3LE, United Kingdom
44-91-374-3658

Robin Jeffries 1 U17
Hewlett-Packard Laboratories
1501 Page Mill Road
Palo Alto, CA 94304
(415) 857-8784

William S. Junk
Computer Science Department
University of Idaho
Moscow,ID 83843
(208) 885-7530

Edward W. Krauser
SjW Engineering Research Center
Dept. of Computer Sciences
Purdue University
West Lafayette, IN 47907-2004
(317) 494-7807

Brian Marick
Motorola
1101 E. University
Urbana, IL 61801
(217) 244-0431

Aditya P. Mathur
Department of Computer Science
Purdue University
West Lafayette, IN 47907
(317) 463-7822

Joe Maybee
Tektronix
Mail Stop 63-356
P.O. Box 1000
Wilsonville, OR 97070-1 000
(503) 685-3572

Andrew Oram
38 High Haith Road
Arlington, MA 02174
(617) 641-1261

VII

Mike Perdue
Sun Technology Enterprises, Inc.
2550 Garcia Ave.
Mountain View, CA 94043
(41 5) 336-711 5

Dr. Jeffrey Voas
Information Services Division
NASA Langley
Mail Stop 478
Hampton, VA 23665
(804) 864-8136

Caroline Wardle
National Science Foundation
1800 G Street NW
Room 304
Washington, D.C. 20550
(202) 357-7349

Nancy Winston
Mentor Graphics Corporation
8005 SW. Boeckman Road
Wilsonville, OR 97070-7777
(503) 685-7000

Dan Zimmerman
Advanced Software Automation
2880 Lakeside Drive Rm. 226
Santa Clara, CA 95054
(408) 492-1668

Bill Sundermeier
Cadre Technologies
P.O. Box 1309
Beaverton, OR 97075
(503) 690-1318

John Cranston
File-Protek, Inc.
P.O. Box 481
Portland, OR 97207
(503) 641-9495

Hanford Choy
Infomentor Software
984 Thatcher Drive
Los Altos, CA 94024
(415) 967-5636

Barbara Kay
Interactive Development Environment
595 Market Street, 10th Floor
San Francisco, CA 94105
(415) 543-0900

Becky Johnson
KnowledgeWare, Inc.
3340 Peachtree Road
Atlanta, GA 30326
(404) 231-8575

EXHIBITORS

vii i

Tali Aben
Mercury Interactive Corp.
3333 Octavius Drive Suite 104
Santa Clara, CA 95054
(408) 982-0100

Jim Steinbacher
Oregon Software
7352 SW Durham Road
Portland, OR 97215
(503) 624-6883

Shawn Wall
Powell's Technical Bookstore
33 NW Park
Portland, OR 97209
(503) 228-3906

Teresa Harrison
SET Laboratories, Inc.
26976 S. Hwy 213
Mulino, OR 97042
(503) 829-7123

Edward Miller
Software Research, Inc.
625 Third Street
San Francisco, CA 94107-1997
(4 15) 957-1 441

David Ouellette
Terra Pacific Writing Corp.
P.O. Box 1244
Corvallis, OR 97339
(503) 754-6043

Alfred M. Pietrasanta
Independent Consultant

10 Sparkling Ridge
New Paltz, NY 1 2561

Al Pie trasanta spent 32 years with the IBM Corporation, partIcIpati ng in, and
managing, many of the major activi t ies in the evolution of the software development
process. In his keynote address , Mr. Pietrasanta wil l cover some of the h ighlights of
this process evolution, from his unique vantage po in t:

o The genesis of a software process, working on OS/36 0with
Fred Brooks (author of "The Myth ical Man Month").

o Teaching Software Project Management to 1 000 managers
i n the 1 96 0's.

o Working with Mike Fagan, originator of the Formal
Inspection Process.

o Establ i shing standardized qual i ty and productiv i ty metr ics
in all development laboratories.

o Measuring quality and productivity across the product l ine.

o Sett ing up an international Software Quality Assurance
organization.

o Sel l ing a s trategy for an integrated set of process tools.

o Presenting to corporate executives an annual "State-Of
The-Process".

o Di rect ing an i nsti tute to teach 7 000 p rofessionals modern
software e ngineering methodology.

For these and other vignettes, Mr. Pietrasanta wil l draw on h i s exper ience in such
IBM posit ions as Di rector of the Programming Process, D irector of Systems
Assurance, and Di re ctor of the IBM Software Engineer ing Inst i tute.

Since ret ir ing from IBM in 1 987, Mr. P ietrasanta has consulted wi th several major
software vendors and government agencies, and has lectured in the Uni ted States,
Europe, South America and Japan on every aspect on software engineering
management and software process i mprovement. H e i s presently a part-t ime
Member of the Technical staff of the Carnegie Mel lon Software Engineer ing
Institute .

1 -

Comparing the Effectiveness of Software Development Paradigms:
Spiral-Prototyping vs Specifying

William Junk
Computer Science Department

University of Idaho

Moscow, ID 83843
208-885-7530

E-mail: costest @ iduil.csrv.uidaho.edu

Mr. Junk is an Assistant Professor of Computer Science specializing in software engineering and has a particular

interest in teaching and research in software quality assurance, software design, and software management areas.

He has been responsible for initiating the senior-level software engineering practicum, and developing courses in

Software Engineering, Software Quality Assurance, Software Metrics, and Software Process Management.

Several of his courses have been offered through the facilities of the National Technological University. During

1989-1990 he was a sabbatical professor in Software Quality Engineering for Varian Medical Equipment where he

focused on software development process issues. Prior to joining the University of Idaho he served in many

engineering, software development, and management positions with the Space Division of General Electric

Company.

Paul Oman
Computer Science Department

University of Idaho

Moscow, ID 83843
208-885-7219

E-mail: oman @ ted.cs.uidaho.edu

Mr. Oman is an Associate Professor in the Computer Science Department. He was instrumental in establishing

the department's Software Engineering Lab and provides overall direction of the lab's operation. His teaching

and research interests lie in the software engineering area with special emphasis on software metrics and software

paradigm evaluation. He has also been extensively involved in teaching the group project portion of the software

engineering practicum. He has been a member of the IEEE Software Editorial Board and editor of the Software

Test Lab column.

Grant Spencer
Varian Medical Equipment

Software Quality Engineering

3045 Hanover Street

Palo Alto, CA 94304-1129
415-424-4516

Mr. Spencer is a Software Quality Engineer for Varian Medical Equipment. He recently completed his MSCS

degree at the University of Idaho where he was involved in the evaluation of projects performed in the senior

level software engineering practicum. At Varian he is now responsible for qualification testing and V&V

activities associated with linear accelerators used in cancer therapy.

Keywords: Software development paradigms, software quality, prototyping, waterfall model, spiral
model, software project management, quantitative studies, programming teams.

2 -

Comparing the Effectiveness of Software Development Paradigms:
Spiral-Prototyping vs. Specifying

William Junk and Paul Oman
University of Idaho

and

Grant Spencer
Varian Medical Equipment

ABSTRACT

For years there has been debate over which software development paradigm is best. There are many
anecdotal reports extolling the advantages of prototyping over specifying approaches, but few
controlled studies have been performed to quantify the differences between them. In this paper we
describe a series of controlled experiments comparing spiral-prototyping to specifying in academic
software development projects. We found that the prototyped products were completed with less
effort, had lower complexity metric values, had fewer reported defects, and were rated higher on the
customer's subjective evaluation of quality. We also found that management of the spiral-prototyping
process is a critical element in project success or failure. Because of the experimental controls
employed in our study and the realism of the programming projects performed, we believe that these
results are valid equally outside the academic environment.

SOFTWARE DEVELOPMENT PARADIGMS

An issue that faces the manager of every software development project is what overall development
strategy to use. In the management arena probably no other single issue has generated as much
discussion. Many different strategies, software development life cycle models, and development
paradigms have been proposed. Each approach has its advocates and each is accompanied by an
attendant set of advantages and disadvantages. In applying these approaches, varying degrees of
success have been reported.

At the center of the debate is the software development process model. The principle use of process
models has been to prescribe a sequence of actions that need to be carried out during development.
The purpose of a process model should be to help make software development a more reliable,
predictable, and productive process.

Early process model representations were drawn from perceived parallels in hardware or system
development and as a result represented software development as a sequential set of independent steps.
Their representations were simplistic and lacked flexibil ity. It seems that no single model fits all
situations and it is important to recognize the circumstances that may favor a particular approach. In
his analysis of software engineering methodologies, Barry Boehm [Boeh84] identified three dominant
paradigms for software development: code-and-fix, specifying, and prototyping. In the following
sections we will briefly review the important characteristics of these approaches.

The Code-and-f"lX Paradigm

Code-and-fix software development consists of writing some code and then fixing the problems which
are sure to arise, then repeating the process again. The system is built with minimal or no

3 -

specifications and with superficial design. The resulting product is initially constructed and then
reworked until users are satisfied or a decision is made to cancel the project. With no emphasis on
documentation there is little likelihood that any useable record of the requirements or design will be
produced. Although there are probably developers still using this approach, its disadvantages are so

significant that we will not consider it further.

The Specifying Paradigm

The specifying approach, commonly known as the waterfall model or as phased refinement, dictates
that software is developed in a series of discrete, successive steps. These steps represent a systematic,
sequential approach that include analyzing, designing, coding, testing, and maintaining the system
[pres87]. In contrast to the code-and-fix approach the waterfall model places significant emphasis on
documentation [Royc70]. Consequently, the waterfall model can be viewed as an artifact-driven model
in which the life cycle phases exist to produce specific artifacts deemed important to the development
of the final software system. Artifacts may be of long- or short-term interest. A typical scenario is (i)
develop a requirements specification in which all system functionality is specified, (ii) develop a design
specification to implement the requirements, (iii) develop code to implement the design with rework
occurring as necessary to fix coding problems discovered during testing, and (iv) install and maintain
the code [Tani89]. The waterfall model as proposed by Royce is shown in Figure 1. Extensive and
rigorous documentation requirements with consistent format and depth of detail are often associated
with this approach. Although documentation is important, this seems to place the focus on artifact
production rather than on their role of communicating information during system development.

'.
EJ

Figure 1. The Waterfall Model [Royc70].

4 -

'.

-----------------.
:I=�==:' ... :
• • I I.�T .. ' r.c:uaa..' • • ... �n • : :a.OO""' ... IWIIC:I"" \ : • ... , .. ,-..CDllnMkU •• • fOMD •
I .. --..n , .. CUfTOIII. • • •
�----------------�

EJ

The expectation that the use of specifying will ensure the development of fully elaborated work
products at the conclusion of each life cycle phase is a characteristic that many software developers
find unnatural and difficult to accomplish. Curtis points out that a major shortcoming of the waterfall
model is its failure to treat software development as a problem solving process [Curt87]. He also
points out that a model focusing on only the end product of each major activity offers little insight into
the actions and events that precede the finished artifact.

Specifying's principle advantages are its recognition of the distinct focus of each phase in which
different skills are needed and its emphasis on complete documentation of the work performed.
Requirements definition concentrates on what must be done while design concentrates on how to do it.
Being concerned with delivering a product that satisfies users' needs, the specifying approach attempts
to discover errors early by reviewing and analyzing intermediate products prior to initiating the next
development phase. Usually, the intermediate products are not conceived with the product's end user
in mind, but rather focus on the issues important to the developers. This environment inhibits the
effective participation of end users in the review process. Key misconception about what the system is
to supposed do may not be uncovered until late in development or after delivery.

The specifying approach is typically criticized as not providing a model of the way people can
comfortably work. Creative activities often require a mixture of analysis and synthesis with iteration
to refine both the understanding and the solution. Gilb [Gilb88] proposed a variation on the specifying
approach that was based on delivering a large number of small, high value increments of capability to
the system's end user. He termed this approach evolutionary delivery. The greatest benefit of this
approach is its emphasis on satisfying user requirements and the opportunity it affords to facilitate
early feedback from the user. The risk associated with this approach is that it can degenerate into a
code-and-fix process.

The Prototyping Paradigm

Prototyping is a process by which the developers capture critical features in a model containing
selected aspects of the proposed system [Tani89]. A prototype's purpose is to allow the user to gain
experience with the proposed system in order to evaluate whether or not their project expectations are
being realized. It is an exploratory process that allows the developers to incrementally discover and
refine the requirements. Curtis states: "Managing uncertainty suggests that we reconceive the software
life cycle as a learning process rather than a manufacturing process" [Curt87]. The need for dealing
with uncertainty requires that techniques be applied to identify and resolve these uncertainties.
Prototyping can be an effective technique for addressing uncertainty. Curtis provides another warning
about the use of prototyping: "Although prototyping may be useful for answering questions on a
piecewise basis during development, it is certainly not the answer at the system level." By itself,
prototyping is simply a useful product development technique and is not a development process or
paradigm.

This raises the question as to whether prototyping in the absence of a process can offer adequate
control to routinely ensure a successful development. There is great risk that the user will not
understand the distinction between a prototype and a finished, robust product and will insist that the
prototype be delivered and supported.

In his comparison of specifying to prototyping, Boehm found that both prototyping and specifying have
advantages which complement each other [Boeh84]. Specifying provided the formalism and
documentation necessary for long-term projects, while prototyping enabled the identification and
investigation of high-risk issues and provided the flexibility to .adapt to the changing perceptions of
users' needs.

5 -

As a result of his work,
Boehm suggested a new
paradigm for software
development and
introduced what is now
called the spiral model of
software development, as
shown in Figure 2
[Boeh88]. The spiral
model is an iterative risk
driven approach (as
opposed to specifying, that
is artifact-driven, or
prototyping, that is code
driven) that can use both
prototyping and specifying
techniques .

Review
Commrtment

partition

Plan next ph .. es

Cumulative
COlt

Progress
through
steps

Develop. verify
nexl·level product

Figure 2. Boehm's Spiral Model [Boeh88].

The spiral model is
inherently iterative. Each
cycle begins with
defmition of objectives,
alternatives, and
constraints. If areas of
uncertainty are found that
represent significant
project risk, then
strategies for resolving the
sources of risk are

L..-___________________________ ---l

formulated. The resolution of the most significant risk drives each iteration.

From an implementation or management perspective, Boehm's presentation of the spiral model is not
completely defined. The risk-driven approach places pressure on development teams to correctly
identify and manage sources of project risk. It does not inherently provide techniques to identify and
manage risk, does not account for people with widely differing experience bases, needs more
elaboration of milestones, and needs better techniques for synchronizing schedules [Boeh88]. Some
insight into risk management is provided by Boehm in [Boeh9 1]. He states "The key contribution of
software risk management is to create this focus on critical success factors - and to provide the
techniques that let the project deal with them." In essence, the spiral model is still a task-based model
although its orientation is substantially different from that of the specifying approach.

EVALUATING LIFE CYCLE MODELS

Evaluating life cycle models is not easy because system development activities are complex processes
with many variables and subject to significant statistical variation. In [Curt87], Curtis proposed a
scheme for understanding the influences on a project. As projects increase in scope from those that
can be accomplished by a single individual, to those requiring a team, and even on to multi-team and
larger projects, analysis must consider cognitive issues, as well as issues relating to interactions at the
group and organizational levels. While the traditional life cycle models describe how product

6 -

information grows and is transformed through a series of artifacts over time, other views are required
to analyze the behavioral processes.

Boehm's Study

In 1982, Barry Boehm conducted an experiment to compare the characteristics of products developed
via the specification-driven approach to those developed with the prototyping approach [Boeh84]. In
his experiment, seven teams developed versions of the COCOMO model for software cost estimation.
This was a small-size (2K - 4K lines of code) application software product implementing the same
estimation equations but allowing each team to create its own user interface to the model. Four teams
used the specifying approach. Three teams used the prototyping approach. The experiment took place
as part of a one-quarter (eleven week), first year graduate course in software engineering at UCLA.

The major milestones for the specifying teams were requirements specification, design specification,
draft user's manual, acceptance test, final user's manual, and maintenance manual. The major
milestones for the prototyping teams were the prototype demo, acceptance test, user's manual, and
maintenance manual. The requirements and design specifications were subjected to a thorough review
by the instructors. This resulted in a set of problem reports returned to the project teams and
discussed in class. The prototypes were exercised by the instructors, who provided similar feedback
on errors, suggested modifications, identified missing capabilities, etc.

Boehm and colleagues tested each product and rated it on a scale of 0 to 10 with respect to
functionality, robustness, ease of use, and ease of learning. There was also a student subjective rating
of the maintainability of the other teams' products.

The main results of Boehm's experiment were: (1) prototyping yielded products with roughly
equivalent performance, but with about 40 percent less code and 45 percent less effort; (2) the
prototyped products rated somewhat lower on functionality and robustness, but higher on ease of use
and ease of learning; and (3) specifying produced more coherent designs and interface specifications
which made integration of the software easier.

There were however, some uncontrolled characteristics of Boehm's experiment that may have
influenced the results. These problems were team organization, team balancing, team separation, and
experimenter bias.

Team Organization: The specifying teams were staffed entirely with students who had expressed a

preference for the specifying approach, and similarly for the prototyping teams. Within each team,
team members were free to organize in whatever way suited them, but most adopted a democratic
consensus based arrangement. This paradigm preference and management style are non-representative
of real world product developments where organizational policy or culture determines the development
approach.

Team Balancing: The prototyping teams were smaller and had more experience that the specifying
teams in both general programming ability and with the language used for development, Pascal.
Table 1 details the team organization and balancing. Differences seen in the product could be caused
by the smaller average team size of the prototyping groups and by the widely differing Pascal and
programming experience between the prototyping and specifying subjects.

Team Separation: Requirements and design reviews and prototype demonstrations were conducted in
front of the entire class. Prototypers particularly benefited from insight gained during specifier's
reviews. To a lesser extent some specifiers may have benefitted from seeing the prototype
demonstration prior to completing their product's design. Preventing cross-fertilization between teams

7 -

was not considered as important as
the anticipated gain in teaching
effectiveness that in-class reviews
and demonstrations would provide.

Experimenter Bias: The
experiment's authors rated each
product in terms of functionality,
robustness, ease of use, and ease of
learning. Since the authors knew
which paradigm had been used to
develop each product, th is
knowledge could have lead to an
unconscious bias toward or against
a particular approach. Rather than
evaluating the projects themselves,

Team No. in Prog. Pascal Unix GPA

Averages Team Exp. * Exp. * Exp. *

Specifying 2.75 36 7 4.5 3.37

Teams

Prototyping 2.33 53 18 2.3 3.27

Teams

* Time in Months

Table 1. Team Balancing in Boehm's Study

they should have used an independent group of experts to rate the products, without any knowledge of
the paradigm employed.

Despite these problems, Boehm's experimental results appear reasonable and his conclusions
appropriate. He concluded that both the specification-based and prototyping approaches have strength,
and in fact complement each other. Specifying provides the formalism and documentation necessary
for large, long-term projects. Prototyping enables the identification of high-risk issues, provides users
with early system experience, and has the flexibility necessary to accommodate changing user
requirements. This led to his conclusion that what was needed was some project specific mix of
specifying and prototyping arrived at by risk management. Risk management dictates that software
projects should develop, maintain, and follow plans that identify potential high risk issues, establish
plans for their resolution, and emphasize risk resolution in product status reviews.

Unresolved Issues: Prototyping seems to offer advantages, such as facilitating early identification of
high risk issues and the flexibility to adapt to changing perceptions of the user's needs. The question
is: When and where should the differing software development approaches be used? Although
prototyping appears to have advantages, it is not really known if it offers the degree of process control
that specifying provides. Furthermore, the characteristics of products appropriate for prototype
development is not well understood. Finally Boehm saw significantly less code and effort by the
prototypers in his experiment, but it is not known if this is a general characteristic to be expected from
the approach or whether it might be due to differences in documentation requirements and experience
levels. It is not clear what the differences are between the approaches, and which activities are
responsible for those differences.

Aside from Boehm's comparative study which showed significantly higher productivity and better ease
of use for systems developed using the prototyping approach [Boeh84], there have been no published
accounts of controlled studies comparing development approaches and evaluating the effects of the
development paradigm on software product quality.

OUR EXPERIMENTS

The differences in quality characteristics of the products developed under different paradigms is not
well understood. The question is, when and where should each approach be used, and what are the
effects on the end products? This is the question that motivated our series of experiments.

8 -

Experimental Procedures: In order to study these issues in a more controlled environment, we
conducted a series of three individual experiments which compared the traditional specifying approach
to a spiral-based prototyping approach. Each experiment involved two balanced teams of experienced
student programmers enrolled in a senior-level, one semester (16 week), software engineering
practicum. The teams were given identical requirements from an independent customer who needed a
system developed. One team was selected to develop the product using a specifying approach while
the other team used a spiral-prototyping approach. Team composition was controlled by the course
instructors in order to provide roughly equivalent capabilities in both teams. Teams were isolated to
avoid cross-fertilization of ideas.

The Specifying Life Cycle: The major
features of the specifying life cycle
used in our experiments are shown in
Figure 3. The specifying teams
produced a requirements specification
document, design specification
document, final code and test
materials, and a user's manual. The
requirements and design documents
were produced following the IEEE
Standard 830 and IEEE Standard 1016
respectively. The teams were expected
to update their documentation so that at
the end of the project, it reflected all
requirements and design changes
implemented subsequent to initial
document preparation. The teams
conducted a system design review that
focused on the system architecture,
user interface, and major files and data
structures. A final product installation
and demonstration concluded the
project.

The Spiral-Prototyping Life Cycle:
The prototyping teams created three
prototypes, then final code and test
materials, a user's manual, and a
maintenance document. A spiral-based
prototyping model was used to support
an incremental development approach.
Each cycle consisted of four phases:
(1) planning/analysis phase, (2)
specify/prototype phase, (3) test/review
phase, and (4) analysis/replanning

I. Project Initiation

1. Project Planning

a. Schedule

h. Team assignments

II. Requirements Definition

1. Customer Interviews

2. Requirement Document

a. Usage scenario

h. Data flow diagrams

c. Data dictionary

III. Design

1. System Architecture

a. Structure chart

h. User interface design

c. File & data structure design

2. System Design Review

3. Detailed Design

a. Module pseudo code

4. Design Document

IV. Coding & Testing

1. Coding

2. Unit Testing

3. Integration

V. Implementation

1. User's Manual

2. Documentation Update

3. Installation & Demonstration

Figure 3. Specifying Life Cycle

phase. The activities occurring during each phase may be seen in Figure 4. Each cycle was initiated
by consideration of the most significant risk item facing the development and each cycle was concluded
by a prototype demonstration and a review. The focus of this review was to assess the strengths and
weaknesses of the prototype, how adequately it had resolved the high risk area, and to identify the
content of the next prototype. A final product installation and demonstration concluded the project.

9 -

Team Balancing: Balanced teams were
assembled to minimize the effect of
variations in capabilities on the
experiment's results. Team balancing
data are shown in Table 2 . Balancing
factors included: number of computer
science courses completed, experience
with mainframe and minicomputers,
experience with microcomputers, number
of languages known, work experience,
implementation language experience,
grade point average, total number of
credits, and a self-determined subjective
rating of their implementation language
proficiency (Rate 1) and general
programming abilities (Rate 2). For
Experiments 1 and 2 implementation
language experience and proficiency
were assessed with respect to the Pascal
language while in Experiment 3 they
referred to the "C" programming
language.

Team Separation: In Experiments 1
and 2 a customer proxy was used to
distance the real customer from the
ongoing experiment and to minimize the
interaction between the two independent
teams. Course instructors acted as the
customer proxies. The customer
provided the requirements and answered
questions directly to both teams.
Information supplied to one team was
also supplied to the other team if it
related to clarification of, or change in
requirements. The customer was not
involved in any design/code reviews or
prototype evaluations. For detailed
review and testing both teams dealt

I. Planning/ Analysis Phase
1. Statement of the objectives
2. Known constraints

a. System
b. Time
c. Other

3. Alternatives
a. Feasible
b. Other
c. Model descriptions

4. Potential problems
a. Problem statements/

possible resolutions

II. Specifications/Prototype Phase
1. Prototype minispecs

a. Data flow diagrams
b. Structure chart
c. Module description

2. Prototype code
a. Prototype driver
b. Modules & stubs

III. Testing/Review Phase

1. Minimal test set generation

2. Test execution
3. Problems encountered

a. Problem statement
b. Actual and/or proposed solution(s)

IV. Analysis/Replanning Phase
1. V & V Checklist
2. Plan for next cycle

a. Statement of goals
b. Team member commitments

Figure 4. A Modified Spiral-Prototyping Model •

directly with the course instructors (experimenters). The customer proxies were used so that the real
customer's perception of the system being developed was not altered by its ongoing development.
Further, we didn't want the customer to "cross-fertilize" the two development projects by unwittingly
passing information between teams. Although from an end-product perspective it certainly would have
been advantageous to have the real customer involved in the development, it was more important to
keep a barrier between the teams.

1 0 -

Team No. in GPA Total CS Work No. of Imp!. Mains & Micros Rate 1 Rate 2
Averages Tcam Credits Classcs Exp.· Lang. Lang. Minis Lang. Prog.

Exp. • Prof . Ability

Experiment 1: FSM Simulator

Specifying 5 2.62 122.2 11.8 9.0 5.0 26.0 2.6 3.6 4.2 4.4

Team

Proto typing 5 2.72 120.0 12.8 5.4 6.0 31.2 3.2 2.8 4.8 4.4

Team

Experiment 2: TVB

Specifying 5 2.41 108.4 9.4 4.8 3.8 13.2 2.6 1.6 3.8 3.4

Team

Proto typing 4 3.36 87.5 11.5 1.0 2.5 23.2 2.0 1.25 3.5 3.25
Team

Experiment 3: DETECH

Specifying 3 2.69 117.7 14.6 5.0 5.0 28.0 3.0 2.0 3.6 3.6
Team

Proto typing 3 3.18 128.0 12.6 4.3 6.0 27.3 3.0 3.33 4.6 3.5
Team

* Time in Months

Table 2. Team Balancing Data

Experimenter Bias: The final product's quality was measured by customer satisfaction and reported
errors . In addition to the customer's evaluation, data were collected to measure code complexity
through a battery of complexity metrics . The separation between the development teams and the
customer facilitated a more objective final evaluation of each product because the customer was not
intimately familiar with the implementation details . The complexity data are objective measures,
independent of the experimenters or customer. After the end products were delivered, the customer
was required to test the products, complete an evaluation form, and produce an error report. Because
of this procedure we believe that we have effectively eliminated experimenter bias for our experiments .

Measures: Data were collected to gauge team effort, code complexity, and software quality . Effort
was measured by hours worked on the project, software complexity was measured with a battery of
complexity metrics, and software quality was measured by customer satisfaction and reported errors .

Effort data were collected weekly from team members during a scheduled team meeting. Team
members were required to complete forms that asked them to log their time expended for each project
activity they had performed.

" -

Complexity data were calculated with a metric analyzer that was applied to the final code from each
development project. These metrics were reported on a module-by-module basis and were then totaled
for the entire system.

In Experiments 1 and 2 the subjective customer evaluation consisted of several five-point, forced
choice positive statements, with responses ranging from I-strongly disagree to 5-strongly agree. In
each experiment the customer tested and evaluated both products. In Experiment 3 the customer was
asked to evaluate each team in several areas relating to the effectiveness of their development
approach.

During customer's testing, reported errors were recorded for both projects and later categorized
according to errors of omission and errors of commission. Errors of omission are the results of
incorrect or missing requirements. Errors of commission are errors for which requirements were
correct but the implementation was flawed.

Experiment 1: The product to be developed was a visual simulator for Finite State Machines (FSM)
as described by Jagielski in the ACM SIGCSE Bulletin [Jagi88]. The system was to allow the user to
create and display a FSM state transition diagram on the computer screen, accept an input sentence
from the user, and check the sentence for being in the FSM's language. As it checked the sentence,
the nodes and arcs in the state transition diagram were to change color to show the path taken. Upon
checking the entire sentence, a message was to be displayed as to whether the sentence was accepted by
the FSM or not.

Options for saving and loading FSMs to/from disk and having keyboard or file entry during simulation
were required. Additional requirements stipulate that the program be developed in Pascal, that it must
run on an IBM compatible PC with EGA graphics, and that it must be able to print the FSM state
transition diagram.

Experiment 2: The product to be developed was a system used to convert document files developed
with the TEX publishing package to files fitting a VENTURA format. This system was termed the
TEX-to-VENTURA Bridge (TVB). TEX and VENTURA are independent commercial desk top
publishing packages that produce documents containing typesetting codes. It was to first prompt the

user as to whether instructions were needed, and display them if necessary. The user was then
required to enter the file name of the TEX file to convert and the VENTURA file to create.

Two windows were to be used to display the TEX to VENTURA conversion process, with a user
controllable scrolling speed. One window displayed the TEX input file, the other window showed the
VENTURA file as it was being formatted. If the system found a TEX code that it could not convert,
the user would be prompted to enter either a null or substitute VENTURA code. An external ASCII
table that could be modified with a text editor was required to define actions between two equivalent
TEX and VENTURA codes. Other requirements mandated that the system be developed in Pascal, and
must run on an IBM or compatible PC.

Experiment 3: The product to be developed was a code similarity measurement tool used to evaluate
suspected illicit program derivations. The program, DETECH, views a source program file as a string
of words from which certain key words are extracted and counted. Similarity between programs is
determined by assessing the programs in three orthogonal dimensions that measure program structure,
complexity, and style. DETECH assesses and reduces each of the three analyses to a single fixed
measure of similarity.

The program was to accept a file name for an "original" program and a file name for a suspected
derivation. It was to read each program and compute the similarity measures for each, and then report

1 2 -

the accumulated and calculated data for both programs . The program was to be written in C and was
to execute on the Apollo computer system.

RESULTS

In the following paragraphs we present a discussion of the results observed in our experiments. The
data are summarized and presented in Table 3.

Product Complexity Comparisons: For the FSM Simulators (Experiment 1), both products were of
similar total size. Overall, the prototyped product contained 10% fewer lines of code. In a detailed
evaluation of the code, we found that the prototyped product contained instances of functionally
redundant code that could have been implemented as utility modules. This would have further reduced
the program's size.

Despite the fact that these products were of similar total size, the prototyped product contained 57
modules, while the specified product only contained 34. The average Vg (McCabe's Cyclomatic Control

Flow Complexity) for the specified product was 12.7 compared to 7.9 for the prototyped product.

The TVB products (Experiment 2) were of considerably different size. The specified product
contained 1650 delivered source lines as opposed to 4771 delivered source lines in the prototyped
product. This large discrepancy occurred because the prototyping team used cut-and-paste editing to
replicate a large amount of code with small editing changes to account for special cases. This
generated a considerable amount of functionally redundant code, and can be viewed as a characteristic
of their programming style. Although the metrics indicated the prototyped product contained
substantially more lines of code and tokens, the per module average is slightly lower in the prototyped
product. The prototyped product contained 109 modules, while the specified product only 34. Despite
the fact that these products were of very different sizes, the result is that the specified product's
modules were on average more complex than those of the prototyped product. The specified product
had an average Vg of 9.94 compared to 6.8 for the prototyped product.

In both the FSM Simulator and the TVB products, the nesting of control structures was lower in the
prototyped products, indicating that they were constructed from modules of lower average complexity.
We also observed that the average Halstead metrics Nl and N2, are substantially lower in the
prototyped implementations, again suggesting the existence of more compact modules. Although in
these two product, the prototyped implementations contained more modules, the average number of
arguments per module are about the same. The increase in modules did not seem to adversely affect
the intermodule communication.

Although only a subset of the metrics were available from the C language implementations of
DETECH (Experiment 3), the same patterns were observed. Again, the prototyping team showed a
tendency to produce a system with more modules and a smaller average module size. The distinction
between the two products was particularly evident with respect to V g' In the specified product it

averaged 10.1 compared to only 4.8 in the prototyped product.

The metric averages support the conclusion that the prototyping approach results in smaller and less
complex modules when compared to the same product developed using the specifying approach. This
was observed in all three experiments.

Development Effort: Effort profiles for each experiment and each team are shown in Figure 5. In
Experiment 1 the specifying team logged a total of 637 hours to complete the project compared to 478
hour logged by the prototyping team. Observable in the figure is the tendency for effort to be driven
by approaching deadlines. Effort peaks near the point where a deliverable, a document or prototype, is
due and tends to decrease sharply after the milestone is completed.

1 3 -

Experiment 1: FSM Simulator

Specifying Total 34 2249 1977 14966 84

Team Module 66.2 58.2 441 . 1 2.5
Av,.

Prototyping Total 57 2172 1686 13423 125

Team Module 38.1 29.6 235.5 2.2
Av,.

Experiment 2: TVB

Specifying Total 34 1650 1462 8790 63

Team Module 48 .5 43 259 1 .85
Av,.

Proto typing Total 109 4771 4149 26588 225

Team Module 43 .8 38.1 244 2.06
Av,.

Experiment 3: D ETECH

Specifying Total 48 4416

Team Module 92.0
Av,.

Proto typing Total 62 3794

Team Module 6 1 .2
Av,.

* Not available for ·C· language implementation

DSL - Delivered Source Lines (excluding comments)
LOC - Lines of Code (executable lines)
TOK - Tokens
ARG - Arguments
COM - Comments

- ------------------------

938

27.6

2069

36.3

275

8.09

2745

25.2

431 165 607 65 17

12.7 4.9 17 .9 191 .7

449 238 930 5479

7.9 4.2 16.3 96. 1

338 177 583 4092

9.94 5 .21 17.2 120.4

742 282 1522 12205

6.8 2.6 14 1 12

484 680 5828

10.1 14.2 121 .4

300 788 4096

4.8 12.7 66.1

v g - McCabe's Measure

NST - Level of Nesting

1079

3 1 .7

1273

22.3

571

16.8

1920

17.6

788

16.4

826

1 3 .3

nl - Halstead' s Unique Operators
N l - Halstead' s Total Operators
n2 - Halstead' s Unique Operands
N2 - Halstead's Total Operands

4670

137.4

4101

72.0

2399

70.6

8183

75 . 1

3574

74.5

2075

33.5

Table 3. End-Product Complexity Comparisons

1 4 -

Ex p e r i m e n t 1

H o u r .
1 4 0

1 2 0

1 0 0

8 0

8 0

4 0

2 0

0
2 3 4 6 8 7 8 g 1 0 1 1 1 2 1 3 1 6 1 8

We e k '

P r o t o t y p i n g Te a m -i3-- S p e e I I y i n g Te a m

E x p e r i m e n t 2

H o u rs 1 2 0 ����---,
C o d i n g 1 0 0

6 0
6 0 o e . l g n

P ro to t y p . 1
* * * 4 0 < � <

2 0 * R e q u i r e m e n t . *
0 2 3 4 5 6 7 6 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6

We e ks
* P r o to t y p i n g Te a m -i3-- S p e c l l y i n g Te a m

E x p e r i m e n t 3
H o u r s

8 0

P r o t o l y p e 2 P r o t o t y p e 3
-8 0 *'

'""

4 0 * - *
-

F i n 8 ' B y . t e ll! 2 0 P r o t o t y p e 1 -

* -..... 0
2 3 4 6 8 7 8 g 1 0 1 1 1 2 1 3 1 4 1 6 1 8

We e ks
* P r o t o t y p i n g re a m ---E3-- S p e c i f y i n g re a m

F i g u r e 5 . We e k l y E f fo r t D a t a f o r Eac h E x p e r i m e n t

1 5

For Experiment 2 the deadline effect is again clearly visible for the specifying team but less noticeable
for the prototyping team. In this project the specifying team logged a total of 568 hours compared to a
total of 455 hours for the prototyping team.

In Experiment 3 the specifying team once again required more effort to complete the project, 507
hours compared to 46 1 hours for the prototyping team. Deadline effects are still clearly visible for
both teams.

Customer Evaluation: On the 20 question, 100 point subjective customer evaluation, the prototyping
team's FSM Simulator was rated a score of 90 compared to a 66 for the specifying team's product.
Both a pairwise t-test (T= 4.7, d.f. = 19, P < 0.001) and a Wilcoxin signed-rank test (W + = 4, N

= 15, P < 0.01) indicate this difference is significant.

On a 15 question, 75 point subjective customer evaluation, the prototyping team's version of the TVB
product received a score of 68 compared to the specifier's score of 54. Both a pairwise t-test (T =
4.52, d.f. = 14, P < 0.001) and a Wilcoxin signed-rank test (W + = 0, N = 1 1 , P < 0.005) indicate

the difference is significant.

The customer for the DETECH produced expressed a preference for the specifying team's product
primarily due to several implementation errors in the counting strategy in the prototyper's product.
However, he preferred for the user interface of the prototyper's product. On a 5 question, 25 point
subjective evaluation the customer rated both teams equally with a score of 22 . The quality of the
prototyper's code was rated higher, while the specifiers were rated higher on overall satisfaction of
project requirements.

Reported Errors: Table 4 presents a
summary of the customer reported errors found
in each product. Errors are classified as either
errors of omission or errors of commission.
Errors of omission are the result of incorrect
or missing requirements. Errors of
commission are errors for which requirements
were correct but the implementation was
flawed.

For the FSM Simulator products, the customer
reported eight errors in the specified product
and four errors in the prototyped product.
While both products had two errors reported as
errors of commission, the specified and
prototyped products contained six and two
error of omission respectively. Significant
problems were reported in the user interface of
the specified product.

For the TVB products, there were six flaws in
the specified product and three flaws in the
prototyped product. While both products had
three errors of commission, the specified
product also contained three errors of omission
while the prototyped product contained none.
Significant flaws in the specified product were

Errors of Errors of

Commission Omission

Experiment 1: FSM Simulator

Specifying Team 2 6

Prototyping Team 2 2

Experiment 2: TVB

Specifying Team 3 3

Prototyping Team 3 0

Experiment 3: DETECH

Specifying Team 3 3

Prototyping Team 5 0

Table 4. Reported Errors for Each
Project

1 6 -

related to an overly simplistic user interface and unexpected program behavior.

For the DETECH product, total errors were about the same for each team. However, the prototyping
team's errors were all classed as errors of commission while the specifiers errors were evenly split
between errors of commission and errors of omission. The prototyper's errors were related to
inaccurate counting. The specifiers failed to implement some requirements, including getting the
product to execute on the target computer system.

CONCLUSIONS AND RECOMMENDATIONS

We have established a mechanism for investigating software development paradigms that ensures
comparability of data collected from independent software development teams. Using this mechanism
we have shown that when comparing prototyping to specifying, the prototyping process facilitated
production of a larger numbers of smaller, less complex modules . These modules took less effort to
develop, and contained fewer errors as a result of software reuse through the evolution of the
prototypes. We were particularly encouraged to see that prototyped products consistently contained
fewer errors of omission.

There was also a reduced deadline effect in the prototyping projects. Effort curves were smoother than
those of the specified projects . Teams using prototyping not only completed their projects with less
effort, but that effort also seemed to be more evenly distributed throughout the project.

The larger module size and V g observed in the specified product led us to evaluate the code itself. We

found segments of unnecessarily duplicated code in multiple modules. Based on our observations we
can postulate that developers using specifying may have had a tendency to stick to the specified design
past the point when it should have been revised . The design probably did not decompose the system
into an adequate number of modules or failed to identify operations that could have been made into
utility modules. Some of the reluctance to create additional modules during the coding phase may have
been due to the mandate to modify formal requirements and design documents so that they accurately
reflected the finished product. The reluctance to change was manifested in modules containing
additional code to implement details unforeseen at design time.

Interesting, we also observed that developers using prototyping unnecessarily duplicated code. We can
postulate that they are often not looking past the immediate prototype when implementing their
systems. It was more convenient to copy existing code and implement minor changes than it was to
create a general purpose module. The lack of design documentation in the prototype developments
may also have contributed to this tendency if team members, in the absence of detailed knowledge
about other portions of the system, independently developed functionally equivalent code to support
their assigned area. Unless there is intent to re-engineer the system at a later time, care should be
taken to evaluate design choices in the context of how they will affect the final system. This
nearsightedness can lead to systems being implemented with inefficient designs which are difficult to
maintain and can lead to functionally redundant code segments.

Although we have shown that prototyping reduces errors of omission, if not careful, prototypers may
lose sight of the original requirements as their systems evolve and may run a risk of failing to deliver a
finished product. Customers and developers using prototyping must take care to examine each new
requirement as to how it supports the original requirements, what implications it has on the system
architecture, and revise the system goals as necessary. They should not let the prototyping take on a
momentum of its own.

Configuration management techniques are needed to keep prototype histories and project baselines
intact in order to ensure that a code-and-fix strategy does not emerge. As part of this baseline,

1 7 -

prototypes should be accompanied by requirements specifications and design materials which document
the important architectural decisions. Evolving customer requirements should also be documented as
part of this baseline. Prototypes themselves do not adequately express the requirements of a system.
Developers using prototyping need additional material to validate the existence of each prototype
component as well as mechanisms to prevent them from simply finishing the project and then tailoring
the final requirements to coincide with the final delivered system.

The modified spiral model was effective in encouraging evaluation of product constraints and
alternatives. It highlighted risk item resolution by having the development team evaluate problems and
possible problem resolutions during each cycle. It helped give the process some structure that is
normally lacking in a prototyping environment, with the desired result that the developers were not
free to just start coding. It also gave the (proxy) customer some early experience with the system and
some opportunities for affecting the direction of the ongoing development. The modified spiral model
template gave both the developers and the customer a good plan to follow as well as the needed
confidence that they were reaching meaningful project milestones.

REFERENCES

[Boeh84) B. W. Boehm, T. E. Gray, and T. Seewaldt, "Prototyping Versus Specifying: A
Multiproject Experiment, " IEEE Transactions on Software Engineering, Vol SE-I0(3), 1984,
pp. 290-302 .

[Boeh88) B. W. Boehm, "A Spiral Model of Software Development and Enhancement, " IEEE
Computer, May 1988, pp. 61-72.

[Boeh91) B. W. Boehm, "Software Risk Management: Principles and Practices, " IEEE Software,
January 1991, pp. 32-41.

[Curt87) Bill Curtis, Herb Krasner, Vincent Shen, and Neil Iscoe, " On Building Software Process
Models Under the Lamppost, " Proceedings of the 9th International Conference on Software
Engineering, March 30-April 2, 1987, pp. 96-103.

[Gilb88) Tom Gilb, Principles of Software Engineering Management, Addison-Wesley, 1988.

[Hagi88) R. Jagielski, "Visual Simulation of Finite State Machines, " ACM SIGCSE Bulletin, Vol
20(4), December 1988, pp. 38-40 .

[Pres87) Roger Pressman, Software Engineering: A Practitioner's Approach, McGraw-Hill, 1987.

[Royc70) Winston W. Royce, "Managing the Development of Large Software Systems, " Proceedings
of IEEE WESCON, August 1970, pp. 1-9.

[Tani89) M. M. Tanik and R. Yeh, "Rapid Prototyping in Software Development, " IEEE Computer,
May 1989, pp. 9-10.

1 8 -

Rapid Prototyping and Software Quality :

Lessons From Industry

V. Scott Gordon James M. Bieman

Department of Computer Science
Colorado State University

Fort Collins, Colorado 80523 USA
(303) 491-7096

gordons@cs.colostate.edu, bieman@cs.colostate.edu

Abstract

Empirical data is required to determine the effect of rapid prototyping on software quality.
In this paper, we examine 24 published and unpublished case studies, in order to report "real
world" experiences. We analyze the case studies to identify common observations, unique
events, and opinions. We develop guidelines to help software developers use rapid prototyping
in such a manner as to maximize product quality and avoid common pitfalls.

The Authors

• V. Scott Gordon is a Ph.D. student in Computer Science at Colorado State University.
He received his B.S. and M.S. degrees in Computer Science at California State University,
Sacramento, and has experience as a software developer working for TRW Defense Systems
Group. Mr. Gordon's research interests include rapid prototyping, genetic algorithms, and
neural networks. He is a member of Upsilon Pi Epsilon and received the 1989 Distinguished
Alumni Award from the CSUS School of Engineering and Computer Science .

• James M. Bieman is an Associate Professor in the Computer Science Department at Col
orado State University. Dr. Bieman's research is focused on software structure and mea
surement , testing strategies, software specification and prototyping. He has published in
journals including the Software Engineering Journal, Journal of Systems and Software, and
Computer Languages, and conferences including COMPSAC and the ACM Testing, Analy
sis, and Verification Symposium (TAV). He recently served on the Highly Reliable Software
Peer Review Committee at NASA Langley Research Center. Dr. Bieman is coordinating
the establishment of a Reliable Software Laboratory at Colorado State University.

Copyright © 1991 V. Scott Gordon and James M. Bieman.

1 9 -

1 Introduction

Prototyping affords both the engineer and the user a chance to "test drive" software to ensure
that it is, in fact, what the user needs. Also, the engineer gains understanding of the technical
demands upon, and the consequent feasibility of, a proposed system. Prototyping is the process
of developing a trial version of a system (a prototype) or its components in order to clarify the
requirements of the system or to reveal critical design considerations. The use of prototyping
may be an effective technique for correcting weaknesses of the traditional "waterfall" software
development life cycle by educating the engineers and users [Har87] .

Does the use of rapid prototyping techniques really improve the quality of software products?
The relationship between development practices and quality must be determined empirically. Our
objective is to learn how to improve the quality of software developed via rapid prototyping by
drawing on the experiences of documented "real world" cases.

In this paper, we investigate the effect of rapid prototyping on software quality by examining
both published and unpublished case studies. These case studies report on the actual use of rapid
prototyping in developing military, commercial, and system applications. We analyze the case
studies to identify common experiences, unique events, and opinions. We develop some guidelines
to help software developers use rapid prototyping in such a manner as to maximize product quality
and avoid common pitfalls.

The nomenclature regarding prototyping varies [Pat83] j we use the following definitions: Rapid
prototyping is prototyping activity which occurs early in the software development life cycle. Since,
in this paper, we are only considering early prototyping, we use the terms "prototyping" and "rapid
prototyping" interchangeably. Throw-away prototyping requires that the prototype be discarded
and not used in the delivered product. Conversely, with keep-it or evolutionary prototyping, all,
or part, of the prototype is retained in the final product . The traditional "waterfall" method is
also called the specification approach. Often prototyping is an iterative process, involving a cyclic
multi-stage design/modify/review procedure. This procedure terminates either when sufficient
experience has been gained from developing the prototype (in the case of throw-away prototyping),
or when the final system is complete (in the case of evolutionary prototyping) . Although there
is some overlap between rapid prototyping and executable specifications [LB89] , we concentrate
here solely on rapid prototyping. We generally follow the taxonomy outlined in [Rat88] .

This paper is organized as follows. In Section 2 we describe our research methods. Section
3 describes seven effects of prototyping on software quality. Section 4 discusses common beliefs
regarding rapid prototyping on quality. We sort out conflicting recommendations concerning four
frequently debated questions regarding proper prototyping methods. In Section 5, we describe
potential pitfalls associated with prototyping that are revealed by the case studies. We suggest
some simple steps to avoid the pitfalls . We summarize our results in Section 6 . The References
include brief descriptions of each case study as well as general works on prototyping.

2 Nature of Study

For this study, we collected actual case study reports for analysis. Our information is from several
available and appropriate sources. These sources include published reports and unpublished
communications.

Although many research papers concerning rapid prototyping have been published [LB89,
Mit82, Rat88] , few papers report on actual real-world experience. We located 17 published re
ports representing 16 case studies. The earliest case study is from 1979, while most are from

2 0 -

the mid-to-Iate 1980's (industry use of rapid prototyping appears to be a relatively recent phe
nomenon) . Accounts come from a variety of sources including Communications of the A CM,
A CM Software Engineering Notes , IEEE Computer, Datamation , Software Practice and Experi
ence, IEEE Transactions on Software Engineering, and several conference proceedings.

To supplement these published reports, we found additional reports through the internet news
service. Through this network search, we have unpublished reports and personal communications
from seven individuals closely associated with rapid prototyping. We also include two papers
which analyze other rapid prototyping cases . Thus, we have 24 sources of case study informa
tion. The sources represent a variety of organizations: AT&T, General Electric, RAND, MITRE,
Martin Marietta, Los Alamos, ROME Air Development Center, Hughes, U.S.West , data pro
cessing centers, government divisions, and others. Nine of the sources are projects conducted at
Universities, but only two of these are student projects . Seven of the sources describe military
projects.

The data is not without bias. For example, in 22 of the 24 individual case studies, rapid pro
totyping is deemed a success. This encouraging result must be tempered by the observation that
failures are seldom reported. Some of the sources, however, do address intermediate difficulties
encountered and perceived disadvantages of rapid prototyping. Another possible bias occurs in
the two sources involving student projects. Boehm describes the inherent bias: "Nothing succeeds
like motivation [when] 20 percent of your grade will depend on how much others want to maintain
your product" [BGS84] . Finally, four of the sources describe projects which involve no customer
per sej the goal of these projects is the development of a system to be used by the developers.
We do not draw strong conclusions regarding clarity of requirements or successful analysis of user
needs when a project does not involve a separate user.

In our analysis, we examine the conclusions made in the case studies with a focus on the
impact of rapid prototyping on software quality. Case studies varied in degree of rigor. Three
sources observe multiple projects and present conclusions based on quantitative measurements of
the results [Ala84, BGS84, CB8S] . Others offer subjective conclusions and suggestions acquired
from personal experience in a particular project. Some of the studies include a minimal amount
of quantitative measurement interspersed with subjective judgement . We emphasize conclusions
that were reached by multiple sources independently.

3 Software Quality Effects

The sources describe the effect of prototyping on several aspects of software quality. Most of the
described effects are positive.

Improved ease of use

Twelve sources indicate that products developed via prototyping are easier to use. Users have an
opportunity to interact with the prototype, and give direct feedback to designers. For example,
Gomaa [Gom83] describes how, in some cases, users are not sure that they want certain functions
implemented until they actually can try them. Users may also find certain features or terminology
confusing. Also, the need for certain features may not be apparent until the system is actually
exercised. In Zelkowitz [ZeI80] , the author "soon tired of retyping in definitions for each . . . run" ,
pointing to a need for the capability to store function definitions.

Eleven sources observe more enthusiastic user participation in the early stages of requirements
definition. Users are more comfortable reacting to a prototype than reading a "boring" [GS81,

2 1 -

GHPS79] abstract written specification. No sources indicate that software produced via rapid
prototyping was more difficult to use.

Better match with user needs

Twelve sources confirm Brooks' famous maxim, "plan to throw one away; you will, anyhow" [Bro75] .
Our interpretation is that software developed without a prototype is less likely to meet actual
user needs , and be discarded. Sources indicate that prototyping tends to help ensure that the
first implementation (after the prototype) will meet users needs: "Omissions of function are of
ten difficult for the user to recognize in formal specifications" [SJ82] . "Prototyping helps ensure
that the nucleus of a system is right before the expenditure of resources for development of the
entire system" [Ala84] . Only one source indicates that the software produced did not meet users'
needs [CB85].

Effect on performance

Three sources suggest that inferior performance is a possible pitfall, especially with evolutionary
prototyping.

"The emphasis in rapid prototyping is typically on proof of concepts rather than
performance. However, a programmer should consider performance as early as possible
if the prototype is to evolve into the final system" [GCG+89] .

Developers who intend to use a significant portion of the prototype in the final system need to
take steps to ensure adequate system performance (see Section 5).

Effect on design quality

Sources report that keep-it prototyping sometimes results in a system with a less coherent design
and more difficult integration. This negative effect can contribute to project failure [CB85] and
can impact successful projects [BGS84] .

On the other hand, the multi-stage design/modify/review process can result in significantly
better overall design. Ford and Marlin state that prototyping "allows early assessment of the
efficiency of techniques required to implement specific features" [FM82] . Overall, three sources
cite improvement in design quality [Hek87, CB85, FM82] , while three sources observe deteriora
tion [BGS84, CB85, Tam82] . See Section 5 for specific recommendations.

Effect on maintainability

Maintainability effects vary. The case studies do not support the belief that keep-it prototyping
results in software that is impossible to maintain. Five sources cite improvement [Hek87, BGS84,
CB85, A4, Ta.e91] , while only two sources note a reduction in maintainability [GCG+89, CB85] .
Hekmatpour describes experiences of maintaining a large system developed via evolutionary pro
totyping: "The ease with which these modifications were made . . . confirms the contention that
prototyping can lead to maintainable products" [Hek87] . In analyzing this particular project , we
infer that the high degree of modularity required for successful evolutionary prototyping can lead
to easily maintainable code. Connell and Brice observe that "the modular style of rapid prototype
development leads to reusable and replaceable functional modules" [CB85] .

There are also indirect reductions in maintenance costs owing to the greater likelihood that
user needs will be met the first time , reducing the "maintenance" associated with changing re
quirements [Ta.e91] . However, some pitfalls should be avoided (see Section 5) .

2 2 -

Code length

Three sources report that prototyping results in shorter final programs [AB90, Hek87, BGS84] .
No sources report an increase in code length. Boehm's explanation is that prototyping encourages
a "higher threshold for incorporating marginally useful features" [BGS84] . Prototyping places a
quicker burden of implementation on the designer, and reduces the talk is cheap effect of un
necessary promises which are implemented as unnecessary code. Thus prototyping may have a
streamlining effect. That is, less critical features are less likely to be included in the final sys
tem, since the prototype reveals which features are essential. Boehm observed a 40% reduction
in source code. Code size may also be reduced when a special-purpose prototyping language is
employed [AB90] , because features specifically useful for a particular project are typically codified
in the language itself and thus do not need to be coded explicitly.

Fewer bells and whistles

None of the sources report an increase in features in the systems due to prototyping. Several
sources report discarding some features in favor of others, and three cases specifically cite a
reduction in the total number of software features [BGS84, CB85] ([CB85] references two case
studies) .

This effect is perhaps counter-intuitive. One might expect that the prototyping paradigm gives
the end user a license to demand more and more functionality. Actually, Boehm observes that
it is more likely that the process will cause critical components to be stressed, and non-critical
features to be suppressed [BGS84] . Connell and Brice observe a reduction in features in both
successful and unsuccessful cases [CB85] .

4 Common Questions

The rapid prototyping literature reveals a number of controversial topics. We describe common
questions which are relevant to software quality, and summarize the often conflicting recommen
dations of our sources.

Should the prototype be kept, or thrown away?

Many engineers are adamantly opposed to keep-it prototyping [A5, Tae91] . Boar's suggestions for
rapid prototyping [Boa85] are often cited, and he generally recommends against keep-it prototyp
ing. Guimaraes [Gui87] is more specific in suggesting that the prototype needs to be discarded
only if it is used to test complex design alternatives.

Our sources do not support the notion that keep-it prototyping results in poor quality software
products. In fact , ten of the studies specifically recommend keep-it (or evolutionary) prototyping.
Only six authors insist that prototypes be discarded. Three of the case studies [AB90, Hek87,
Tam82] represent successful keep-it prototyping on large software projects . On small projects,
several sources suggest that keep-it prototyping is essential. Strand and Jones state that "for
small-scale systems, clearly the prototype must be a part of the finished system or prototyping
is economically infeasible" [SJ82] . Gupta et al. [GCG+89] report that "the environment should
encourage code reusability, to extract maximum work from a minimum of code . . . to avoid
reprogramming as the system evolves ." We conclude that both keep-it and throw-away prototyping
have pitfalls. See Section 5 for details .

2 3 -

What language should be used to develop the prototype?

Although most sources stress the importance of carefully selecting a language suitable for prototyp
ing, 22 cases employed 18 different languages. One common suggestion is that the language should
offer convenient input/output development. Two cases [AB90, GCG+89] , suggest object-oriented
environments are preferred for evolutionary prototyping. The most popular single language choice
was Lisp, although it was used in only three cases [HLC82, Hek87, AB90] .

Can prototyping be used for developing large systems?

Of 24 cases, three can be considered large [AB90, Hek87, Tam82] , and another eight are medium
or medium-to-Iarge [Gom83, BJK+ 89, CB85, A1, A4, Ze180, GCG+89] . We find no support
for the common notion that evolutionary prototyping is dangerous for large projects. All three
cases involving large projects used evolutionary prototyping. However, the pitfalls involved with
evolutionary prototyping seem to grow in proportion to the size of the system being prototyped.
See Section 5 for specific recommendations.

Does rapid prototyping require experienced programmers?

Eleven cases used experienced programmers and two used inexperienced programmers . Experience
levels are not indicated in the remaining cases. One case utilized novice programmers successfully
on a small system in a non-contractual environment [Ala84] .

A few of the sources recommend an experienced , well-trained team as essential for successful
prototyping. Connell and Brice [CB85] describe a project which failed partly because temporary
student programmers were thrown into a rapid prototyping environment . Other sources [A7,
Tam82, Ala84] state that experienced (or at least thoroughly trained) engineers are required for
successful use of rapid prototyping. Alavi describes a successful small-scale project which utilized
entry-level programmers, but then concludes without explanation that "Prerequisites to successful
prototyping include . . . motivated and knowledgeable users and designers" [Ala84] . Overall, the
evidence suggests that it is dangerous to put inexperienced programmers into a rapid prototyping
environment.

5 Pitfalls and How to Avoid Them

Much of the literature about rapid prototyping describes inherent pitfalls not found when using
the specification approach [Boa85] . Examination of the case studies confirms that these pitfalls
are real. Fortunately, the sources also describe similar methods of dealing with each of them.

Inferior design quality

Poor design quality commonly results when a prototype is meant to be thrown away, but is kept
instead in order to save costs . Quality also suffers when, during evolutionary prototyping, design
standards are not enforced in the prototype system. To avoid this problem, Connell and Brice
suggest adhering to a design checklist [CB85] . Code which is transferred to the final product
must satisfy the checklist . Quality can also be improved by limiting the scope of the prototype
to a particular subset (often the user interface) [Ala84, Tam82, Tae91] , and by including a design
phase with each iteration of the prototype [Hek87] . Another option is to completely discard the
prototype.

2 4 -

Unmaintainable code

A prototype which is developed quickly, massaged into the final product, and then hurriedly
documented can be very difficult to maintain or enhance. The advice for avoiding inferior design
quality also apply here. Documentation criteria should be included in the design checklist to
ensure complete system documentation of the prototype. Other suggestions include frequent
reviews [Hek87] and the use of object-oriented technology [GCG+89] . Of course, discarding the
prototype is also an option.

Poor performance

The consensus is to build the prototype without initial concern for system performance [Gom83,
Ze180, HLC82] . However, the prototype can demonstrate functionality that is not possible under
real-time constraints. This problem may not be discovered until long after the prototype phase
is complete. One way of avoiding this pitfall is to use an open system development environment
to make it easier to integrate faster routines when necessary [GCG+89] . Two sources suggest the
early measurement of performance, especially when evaluating design alternatives [CB85, Gui87].
Performance issues are less critical when the prototype focuses solely on the user interface. Again,
discarding the prototype is also an option.

A throw-away prototype becomes the product

This common problem (observed by four sources [Gui87, CB85, A3, Tae91]) typically occurs when
managers are initially sold on the idea of throw-away prototyping. But , when they see the proto
type, managers decide to save money by massaging the prototype into the product . The resulting
system often lacks robustness, is poorly designed, and is un-maintainable. [Gui87, CB85, A3,
Tae91] stress the importance of avoiding this pitfall; either plan to keep the prototype, or discard
it. One of the perils of throw-away prototyping is that the prototype may not get thrown away.
Guimaraes observes this phenomenon "creating trouble at some companies" when "undocumented
prototypes that were intended to be thrown away are kept, and become the poorly planned bases
for large, complex systems that are consequently difficult to use and maintain" [Gui87] . Managers
can avoid this pitfall by adequately training the programmers and maintaining a firm commitment
to the prototyping paradigm. Careful definition of the scope and purpose of the prototype is also
indicated as a means of avoiding this pitfall.

Lengthy iteration of the prototype phase

Prototype development can be time consuming, especially when the purpose and scope of the
prototype is not initially well-defined. Boar's work [Boa85] describes how inadequate narrowing
of the scope of the prototype can lead to thrashing or aimless wandering, the result of which
will be of little use to a design team later on. Four of the industry sources support Boar's
claim [Ala84, CB85, HLC82, Tam82] . Additional suggestions for avoiding this pitfall include using
a highly disciplined approach to scheduling prototyping activities such as described in [Hek87] ,
and avoiding throwing entry-level programmers into a rapid prototyping environment [CB85] .

Skeptical end-users

End-users can become skeptical when given too much access to the prototype. Users may equate
the incompleteness and imperfections, which naturally exist in a prototype, with shoddy design.

2 5 -

By limiting user interaction to a more controlled setting, user expectations can be kept at rea
sonable levels [CB85] . Two sources [Ala84, A3] recommend not overselling the prototype.

Evolving a large system results in a large mess
Evolutionary prototyping on large projects can result in a system filled with patches as hastily
designed modules become the root of later problems. One way to avoid this is to use an object
oriented approach [AB90, GCG+S9, A5] . Another method is to limit prototyping to user interface
modules which are less likely to involve important data structure design decisions. A highly
disciplined approach such as that used in [HekS7] is also recommended.

Underestimating conversion time
Prototyping languages are often utilized to ease implementation of a particular aspect of the
system. For example, if the prototype is developed to test various user interface options, a
language which provides convenient I/O capabilities is selected. The conversion may be non
trivial if the ultimate target language does not have such simple I/O handling. This pitfall was
observed by Zelkowitz [ZeISO] , and alluded to by Taenzer [Tae91] . Careful definition of the scope
of the prototype, and a systematic comparison of the features of both languages can help to avoid
this pitfall.

6 Conclusions

The real-world case studies suggest that rapid prototyping, when employed properly, leads to
improved software quality. The primary improvements are ease of use, better match with user
needs, tighter code, and often better maintainability. We do not find support for the common
notion that rapid prototyping cannot be used for developing large systems. We find no particular
bias towards either keep-it or throw-away prototyping, and the case studies provide little insight
into which languages are better for prototyping. We find a number of inherent pitfalls with pro
totyping. In order to avoid these pitfalls (described in Section 5), we recommend that developers
try the following:

• Carefully define the purpose and scope of the prototype.

• Avoid the use of entry-level programmers.

• Utilize a design checklist.

• Use an open system environment (such as object-oriented methods) .

• Consider performance issues early.

• Limit end-user interaction to a controlled setting.

• Do not under-estimate conversion time.

• Do not keep a prototype that was not initially intended to be kept.

Case study data is not easy to find and is somewhat biased. Negative results are seldom
published. Our analysis can be improved with additional case study data, especially descriptions of
rapid prototyping in large software projects. Although we cannot conclude that rapid prototyping

2 6 -

is dangerous for large projects (the data indicates otherwise), we are not willing to state that rapid
prototyping is good for large projects using information from only three case studies.

Rapid prototyping is being successfully employed in the software industry. With the lessons
provided by the case studies, rapid prototyping can be used to improve software quality.

References

[Boa85]

[Bro75]

[Har87]

[LB89]

[Mit82]

[Pat83]

[Rat88]

[AB90]

[Ala84]

[BGS84]

B . Boar. Application Prototyping - A Project Management Perspective. AMA Membership
Publications Division, 1 985.

F . Brooks. The Mythical Man-Month. Addison-Wesley, 1975.

K. H arwood. On prototyping and the role of the software engineer. A CM SIGSOFT Software

Engineering Notes, 12(4):34, Oct 1987.

J. Leszczykowski and J. Bieman. Prosper: A language for specification by prototyping. Com

puter Languages, 14(3): 165-180, 1989.

R. Mittermeir. Hibol - a language for fast prototyping in data processing environments. A CM

SIGSOFT Software Engineering Notes, 7(5) : 1 33-141 , Dec 1 982.

B. Patton. Prototyping - a nomenclature problem . A CM SIGSOFT Software Engineering

Notes, 8(2) : 14-16, April 1 983.

B . Ratcliff. Early and not-so-early prototyping - rationale and tool support. Proc. COMPSA C

88, pp 127-134, Nov 1 988.

Case Studies

E. Arnold and D. Brown. Object oriented software technologies applied to switching system
architectures and software development processes . Proc. 13th A nnual Switching Symposium,

vol 2, pp 97-106, 1990.

Describes a methodology for applying object oriented technology to switching systems. The
advantages of an object oriented approach as it relates to prototyping is discussed .

M . Alavi. An assessment of the prototyping approach to information systems development.
Communications of the A CM, 27(6):556-563, June 1984.

Twelve information systems development projects using the prototyping approach in six orga
nizations are analyzed. Also, an experiment involving nine student groups is presented which
compares the use of the prototyping method with the specification approach .

B. Boehm, T. Gray, and T. Seewaldt. Prototyping versus specifying: A multiproject experi
ment. IEEE Transactions on Software Engineering, SE- I0(3) :290-302, May 1984.

Seven student teams developed the same product, three use prototyping, and four use specifi
cation. Boehm compares the specification technique with the prototyping technique.

[BJK+ 89] P. Bonasso, P. Jordan, K. Keller, R. Nugent R. Tucker, and D. Vogel . A software storming
approach to rapid prototyping. Proc. 22nd A nnual Hawaii Conf on System Sciences, vol 2, pp
368-376, 1 989.

A new methodology for rapid prototyping called software storming is proposed, which involves
an intense one-week period of videotaped interaction between software designers and end users.

2 7 -

[CB85]

[FM82]

J . Connell and L. Brice. The impact of implementing a rapid prototype on system maintenance.
A FIPS Conference Proceedings, vol 54, pp 515-524, 1 985.

Describes case studies using the INGRES data base system. One project was completed and
implemented to the apparent satisfaction of all parties. Another was criticized by various
parties and eventually abandoned.

R. Ford and C. Marlin. Implementation prototypes in the development of programming lan
guage features. A CM SIGSOFT Software Engineering Notes, 7(5):6 1-66, Dec 1982.

Describes the authors experiences applying prototyping techniques to the development of pro
gramming languages with advanced features.

[GCG+89] R. Gupta, W. Cheng, R. Gupta, I. Hardonag, and M. Breuer. An object-oriented VLSI CAD
framework . A case study in rapid prototyping. IEEE Computer, 22(5) :28-36, May 1989.

Shows the suitability of rapid prototyping for the development of CAD systems, and to object
oriented development . The focus is on the specific application being prototyped, rather than
the merits of prototyping in general.

[GHPS79] G. Groner, M. Hopwood, N. Palley, and W. Sibley. Requirements analysis in clinical research
information processing - a case study. IEEE Computer, 12(9) : 100-108, Sept 1979.

[Gom83]

[GS81]

[Gui87]

[Hek87]

[HLC82]

[Rze89]

A number of small clinical research programs were developed and evaluated for users who have
difficulty in clearly expressing their computing needs.

H. Gomaa. The impact of rapid prototyping on specifying user requirements. A CM Software

Engineering Notes, 8(2) : 1 7-28, April 1983.

Describes a case study of a large system developed at General Electric called PROMIS, a
Process Management and Information System for integrated circuit fabrication. The progress
of prototyping and subsequent development are tracked by the author.

H. Gomaa and D. Scott. Prototyping as a tool in the specification of user requirements. 5th

Int. Conf on Software Engineering, pp 333-339, 1 98 1 . See [Gom83] for description.

T. Guimaraes. Prototyping: Orchestrating for success. Datamation, pp 101-106, Dec 1987.

Describes an extensive field study of 48 Fortune 1000 companies which evaluates whether or
not prototypes should be discarded. Although the majority of companies employ throw-away
prototyping, the author concludes that generally keep-it prototyping is preferable.

S. Hekmatpour. Experience with evolutionary prototyping in a large software project. A CM

SIGSOFT Software Engineering Notes, 12(1) :38-4 1 , Jan 1987.

Rapid prototyping methodologies are used to develop a prototyping language called EPROL
and a prototyping system called EPROS. Shows the successful use of evolutionary prototyping
on large systems.

C. Heitmeyer, C. Landwehr, and M. Cornwell. The use of quick prototypes in the secure
military message systems project. A CM SIGSOFT Software Engineering Notes, 7(5) :85-87,
Dec 1 982.

A small military prototype messaging system is developed using LISP. Focuses on the role of
the prototype, prototyping efforts in general, and reuse of prototype code.

W. Rzepka. A requirements engineering testbed: Concept, status and first results. Proc. 22nd

A nnual Hawaii Conference on System Sciences, vol 2, pp 339-347, 1 989.

Describes a prototyping environment at the Rome Air Development Center. Concentrates on
a heavily I/O intensive application , and notes significant speedup in development time.

2 8 -

[SJ82]

[Tae9 1]

[Tam82]

[ZeI80]

E. Strand and W. Jones. Prototyping and small software projects. A CM SIGSOFT Software
Engineering Notes, 7(5): 169-170, Dec 1 982.

The retention of the prototype code and the use of a special-purpose prototyping language are
shown to be useful techniques in small-scale software projects.

D. Taenzer (U.S. West) . Personal communications.

Rapid prototyping improved quality and ease of use of final products, and increased user
participation. Developers are often pressured into reusing a throw-away prototype. Careful
definition of the scope and definition of the prototype is recommended .

D. Tamanaha. An integrated rapid prototyping methodology for command and control sys
tems: Experience and insight. A CM SIGSOFT Software Engineering Notes, 7(5):387-396,
Dec 1 982.

Describes a major ($100M) military project implemented successfully using rapid prototyp
ing. CICS is used as the development environment. Provides insights into the effects that
prototyping necessitates on management techniques and the software development process.

M . Zelkowitz. A case study in rapid prototyping. Software - Practice and Experience,
10(12) : 1037-1042, Dec 1980.

Describes experiences implementing Backus' FFP System using rapid prototyping. The need
for certain functionality became apparent while exercising the prototype.

Sources Requesting Anonymity

[AI] Employee at major university.

Development of a University online registration system is described. Authors report improved
customer satisfaction, ease of use, and ease of training.

[A2] Researcher at major university.

Expressed satisfaction with SCHEME as a prototyping language, based on the ultimate pro
duction of a working system in C.

[A3] Engineer at large telecommunications firm.

Describes problems with rapid prototyping which initially stemmed from management not
understanding the limits of a prototype, and which have caused hardships and ultimate failure.

[A4] Engineer at large military contracting firm.

A substantial improvement in product quality, reduced effort , lower maintenance costs, and
faster delivery is achieved by the use of rapid prototyping. In particular, leveraging with off
the-shelf products helps greatly.

[A5] Engineer at large data processing firm.

Prototyping has been quite effective. Recommendations include using object oriented approach,
throw-away prototyping, and the careful selection of an appropriate prototyping language.

[A6] Engineer at large Government/Military division.

Small government systems have been developed successfully with rapid prototyping. Reuse of
50% of the prototype was generally achieved. Product quality was improved , and users were
more likely to get what they wanted. Some people became upset when their ideas were quickly
discredited by experiences with the prototype.

[A 7] Engineer at small software company.

Prototyping worked well in a small project environment. Lines-of-code per day can be bid at
a higher rate, but the method only works if experienced engineers are available.

2 9 -

Bio

Michael Perdue
Sun Technology Enterprises, Inc.

2550 Garcia Ave.
Mountain View, CA 94043

Michael Perdue is Manager of Product Verification for the
Software Development Products business unit in Sun
Technology Enterprises, Inc. H e has been working on
implementing a new development process for Sun
Microsystems over the last three years . He is especially
interested in the human side of processes and h ow people
adapt to change . He was previously involved in software
quality improvement programs at Motorola

Sun has been working 3 - 1/2 years to effect a culture
change in the development of software products. This talk
will describe our experiences (good and bad) and key
lessons we 've learned. It will focus on h ow management
teams and the various engineering communities within Sun
are reacting to the new process.

NOTE: Paper unavailable by printing deadl ine .

30 -

CMSYS - A Database System for Software Metrics Collection

Geoff Flamank
Software Quality Assurance

Dynapro Systems Incorporated
800 Carleton Court

Annacis Island, New Westminster
British Columbia, Canada V3M 613

(6 04)521-3962

Abstract

Collecting the desired data is a major problem when attempting to analyze
information (metrics) and improve a software development process. Many organizations
use a paper-based system which does not promote efficient retrieval of i nformation and
often results in issues and sug�ested changes being lost or forgotten. A problem with many
of these systems is that they dIvorce themselves from the software development process.
CMSYS (Change Request and Configuration Management System) - a change control and
metrics repository - was designed and built to have this data collected in real-time by being
an integral function of the regular engineering change and configuration management
cycle.

This paper is a case study which discusses the CMSYS database design focusing on
key concepts such as: Customer Impact Severities and Weights, Failure and Fault Weights,
Identification of Discovered and Responsible Processes, and Review and Suggestion
tracking. Two valuable software metrics that can be easily produced using CMSYS are
described, along with examples of their use : the Quality Index is used to monitor product
quality throughout the development life cycle; the Review Efficienc;y Index is used to
monitor the development process and its effectiveness.

Bio2raphical Sketch :

Geoff Flamank is a Software Quality Assurance Engineer at Dynapro Systems
Incorporated (DSI) based in Vancouver, British Columbia, Canada. With a development
staff of over 5 0 people, DSI designs and manufactures hardware, software and embedded
firmware for real-time industrial process control applications. Previous to his work in SQA
at DSI, Mr. Flamank worked as an SQA Engineer in the building of the Automated
Weather Distribution System for the United States Airforce. He also held positions as a
software engineer and a project manager. His work in the development and
implementation of CMSYS earned him the 1991 Dynapro Award for Quality. Mr.
Flamank's interests are in software metrics, the software development process, and
Configuration Management.

3 1 -

Change Reque st and Conf igu�at ion Hanage�ent Syste�

Rev is ion 83 . 81 . 81 16-Ap�-91

Copy�ight 1991 Dynap�o Syste.s I n c .

P�ess any key t o cont inue .

Figure 1 - CMSYS

The topic of software metrics is often discussed at many conferences. One fact
boldly stands out as its major obstacle: collecting the data is the most difficult part of
metrics analysis. CMSYS (Change Request and Configuration Management System), a
sophisticated automated change control system developed in-house at Oynapro Systems
Incorporated (OSI), has allowed us to collect software process metrics effectively and
efficiently by integrating a disciplined Configuration Management process with a
comprehensive, multiuser Change Request database design and a delta-storage
mechanism. It differs from other systems in that the stored change information facilitates
defect analysis, error trend analysis, software process and product metrics analysis, quality
goal setting and maintenance planning - in addition to the more traditional source code
and document version control.

steps:
The Oynapro software quality improvement process is comprised of five major

(1) define the processes and deliverables,
(2) establish a strong Configuration Management (CM) organization,
(3) control and monitor the changes,
(4) set some goals, and
(5) evaluate the goals continuously and make adjustments where necessary.

CMSYS plays a major role in the achievement of these steps and is considered the
cornerstone of our software quality improvement program.

This paper will present some background on the OSI development process, a terse
description of the overall system architecture and table structures, followed by an in depth
discussion of how, when and what data is collected, some important design considerations
and what we do with the information. The successes, challenges and future plans will also
be discussed.

A. Back2round

The pre- 1987 phase at OSI consisted of a non-networked environment of PC's in
which one of our major products still operated in the CP 1M environment! The manner in
which a product was built and the overall quality of the products was left up to a small
group of highly skilled, knowledgeable individuals. Configuration Management (CM) was

3 2 -

performed in an adhoc manner by backing up diskettes and sharing the information by
swapping diskettes - the classic, exciting "small company" where everyone knew what was
happening but could not quantify it. One of the difficulties in quantitying quality
concerned the handling of changes. The monitoring and logging of problems was handled
via a paper-based system which required numerous approvals by people outside of the
development cycle (Senior Managers and Project Managers) before change could happen.
The photocopied form was passed by hand to team members (often three to four sets of
hands before it reached the actual implementor of the change or fix). Non-current
Summary Reports were generated weekly then discussed in a multi-project meeting.
Needless to say, this was not an efficient or highly reliable system. Nor did it give us the
flexibility and means to ask the questions and get the answers to what we needed to know.
Namely, "how do we improve the way we are building our software products?".

Until the mid-8 0's, DSI's product quality was measured by:

(1) the number of sales,
(2) the number of stop-shipments,
(3) the number of requested product enhancements, and
(4) the number of requests for new product development.

These, however, are not enough to survive in today's competitive market place.
Customer expectations for functionality, reliabil ity, usability, correctness, overall polish,
and speed of repair response are all increasing. We must not only build a higher quality
product, we must get it to the customer quicker.

The theme that we have put in place at DSI is:

"If the process is done correctly with the highest level of commitment, the result will
be a higher quality product which gets to the customer quicker".

This has been a strong challenge to our development team and process.

In 1987 a new project began which introduced the concept of customer quality
requirements - buildin� a product to meet defined standards. This marked the first
occurrence of a disciplmed software process integrated with a Configuration Management
organization. Though development took place in the PC environment, code was stored and
version-controlled on a micro-VAX using the DEC Code Management System (CMS) and
changes were controlled via a VAX-resident system developed in-house. These changes
were successful in that they introduced DSI to CM. The change control logging process,
however, was not entirely accepted by the developers because it:

(1) did not reside on the development environment,
(2) was relatively slow compared to existing tools used, and
(3) had a poor user-interface.

The search then began for an integrated Configuration Management and Change
Request System that would satisfy what we thought were some fairly basic needs - the
system had to:

(1) be a multi-user, on-line system,
(2) allow for tailoring to our development process,
(3) be easy to use,
(4) be flexible to allow for user-definable information retrieval, and
(5) be resident on a Novell Development Environment platform.

3 3 -

After much investigation, we realized that we weren't going to find what we wanted
and began building a system which integrated a delta-storage mechanism with a multi-user,
relational database.

The 199 1 DSI software development team is relatively small - approximately 50. Its
size, c0!1'0rate structure and people are all leading factors in the success of CMSYS.
CMSYS IS used, on the average, 30 to 40 times per day.

B. System Architecture

Figure 2 shows a Context Diagram for CMSYS indicating the various departments
and team members actively using the system, and the external software packages tied to the
system.

/
/

Delta
Storaq
S ystem

' \
� .. , � 4/

(C M SY S
\ /

Prodl,lc
Met r l c
System

Fi2ure 2 - Context Dia2ram

Datq.Bas
Eng l ne

CMSYS provides the ability to monitor the quality of software processes by viewing
different aspects of the change activity. Engineers assigned to develop and maintain the
software for a specific subsystem or unit may select change activity for that specific item
and act accordingly. Project Leaders or System Architects may wish to view activity at the
subsystem level. Quality Assurance and Engineering Methodologists may wish to view the
project quality at a process level. Senior Management may only wish to view the project at
a "Number of Problems" level.

34 -

CMSYS interfaces with a delta-storage system which handles version control and
storage of all code and document changes required to generate a specific release. All unit
code is "reserved" and "baselined" by the Configuration Management organization through
this CMSYS interface.

CMSYS generates process metries and, in the CMSYS database environment,
provides the opportunity to research and correlate imported externally generated product
metries. The product metrics are generated as selected Releases are built and baselined.
An external packa�e, PC-Metric from SET Labs, is used to generate software product
metrics. The metncs generated include Halstead's Software Science, McCabe's Metric,
Lines of Code, and others. The results are imported into the CMSYS database
environment where further off-line metrics analysis can be performed.

To promote flexibility and ease of maintenance, a leading DOS-based, multi-user,
relational database package was chosen to quarterback the system. Through interaction
with external code control packages and product metric collection tools, real-time
information on the change activity and quality of a product during development and
maintenance is made available to Software Engineering, Quality Assurance/Test
Engineering, Configuration Management, Marketing, or any other team member.

Once the development process becomes disciplined, all that remains for successful
metrics generation is to ensure that the right information is collected.

Request �<�---------------------�' Change)
Sul:5System

/�' "
�. � -�-" -"-����---

S ystems SubSy stems un i ts

'" '+ ------:71...-----

�'� I
, /

Rel ea s e s
"

(�=:��<����> §���'ms ���>(Re l ea s�
,

subsystem) ------- SubSy stem

�.. � �
Figure 3 - CMSYS Su bsystem Architectu re

Figure 3 displays the major CMSYS subsystems and their data interfaces. More
information on the Items and Releases subsystem can be obtained by contacting the
author.

35 -

C. The Chan2e Request

CMSYS and the Chan2e Cycle

It is absolutely fundamental to the success of a software metrics collection system
that all of the change information be entered without redundancy. That is, all change
activity should be initiated through the entry of a new Change Request (CR) with
subsequent change cycle information appended to this record and only this record. This
implies that there is one single source of information that is maintained and made available
for information retrieval.

Equally as important is that the system be accepted by the software engineering
team. In order for this to happen, the information must be valuable, current, and
accessible at any time. Figure 4 shows the Change Cycle at a very simplified level and the
CMSYS involvement.

F i x
Prob l em

3 6 -

Base l i n

Prodl.,lct
Met r l c s
Subsyst

Chan2e Request Entry

Figure 5 displays the standard entry form for a Change Request (CR) - it is used for
virtually all CR activity. This form is comprised of three sections:

(1) general information (title, type, severity, etc. - the top third of the screen),
(2) change description (middle third), and
(3) dependancies (items that are affected by the change) .

Fi2ure 5 - Chan2e Reguest Entry

A brief description of the key fields follows:

Prod uct (not shown)

Each product, logically and physically, has its own metrics change information
tables. Software engineers do not have a great deal of interest in the status of projects
other than their own, nor do they wish to have the performance of their activitIes affected
due to the processing of other project data.

CR Title

A one line description is used for quick searches and reports.

CR Type

CMSYS handles the activities associated with most types of changes. We are
currently using it to track suggestions, planned updates (changes to an established baseline
as a result of enhancements), and review minutes, as well as problems.

3 7 -

CR Severit ies

Each Change Request can be assigned a severity. Though problems are, generally,
the only entities assigned a severity, CMSYS allows the user to apply it to other types of
changes. Each severity is given a weight which is later used to calculate the QualIty Index
(see the section on Quality Metric Graphs). The following Severities and Weights are
used:

Critical 10
Major 3
Minor 1
Incidental .5

The weightings are loosely based on the IEEE Standard Dictionary of Measures to
Produce Reliable Software, Std. 982. 1-1988, 4.8 Defect Indices.

Phase Discovered/Phase Responsible

A key feature of CMSYS is its ability to identify the process or phase in which a
problem was discovered compared against the process or phase when i t should have been
discovered. If each phase is assigned a process value, the difference between phase
discovered and phase responsible will indicate the number of "checks" that failed to identify
this problem. When these differences are summed and the average calculated, an
interesting number we call the "Review Efficiency Index", is generated. This new
measurement permits us to monitor the efficiency of the development process. Further
discussion on this concept can be found in the section on Quality MetrIC Graphs.

The development processes, problem types and process values are :

Requirements

Design

Implementation

Product Builds

User Interface
Missing Requirement
Misinterpreted/Incomplete
Miscellaneous

Missing Design Feature
Interface
Interprocess Handling
Logic/Processing
Data Structures
Error Handling
Design Architecture
Miscellaneous

Data Structures
Logic(lf-Then-Else, etc.)
Computation
Error Handling
Miscellaneous

Values

1

2

3

Missing files, wrong environment 4

3 8 -

Misc. Ref. Priority. A-B Con tact

These are miscellaneous data fields which are specific to our company's process and
business relationships.

CR Descriptions and Solutions

CR Description text and Solution text (not shown) are stored in separate tables.
This allows users of the system to establish their own criteria for key-word searching.

Fai lure and Fault Trackin&: - The "Dependancies"

The Dependancy Table entries are found in the bottom third of the screen in Figure
5. The fields that are displayed on this form are:

Statuses

The overall status of a CR is determined by the lowest status of all items in the
Dependancy Table. CMSYS uses the following statuses and identifies each with a sequence
or weight:

Reported
Reviewed
Assigned
Reserved
Submitted
Delta-stored
Deferred
Baselined
Released
No Action Taken
Withdrawn
Transferred

Reported Release

o
1
2
3
4
5
6
7
8
9
10
1 1

A "Reported Release" indicates the release in which the change was identified.
Release identifiers at Dynapro have the following convention:

1 .0.0 El . . .n
1 .0.0 Ql . . .n
1 .0.0

Used for Engineering Integration Builds
Used for System Testing and Acceptance Testing Builds
Release delivered to the Customer

The " 1 .0.0" portion of the release identifier is substituted with the specific release
that we are working towards. That is, if we are currently working towards enhancing an
existing product and the release of this product will be identified as "3. 1 .2", all Integration
or Engineering releases will be of the format "3. 1 .2 El .. .En", all formal System
Testing/Acceptance Testing builds will be of the format "3. 1 .2 Ql . . .Qn".

39 -

System. Subsystem and Unit

The components that are control led by CMSYS are identified in the Item/Systems
Table. This table allows for a 3-level hierarchy to define the software: Systems,
Subsystems or Units. A "System" is defined as a deliverable and is always the item to which
a formal "Reported Release" identifier is assigned. The "Subsystem" is used to partition
subordinate "Units" into logical groups and is used generally for reporting purposes only.
The "Unit" is the main working piece in CMSYS. It consists of one or more files which form
a logical relationship.

The minimum data entry requirements for a dependancy item are the "Reported
Release" and the "System". When a change is completed and submitted to Configuration
Management, the associated units are added to the Dependancy Table for the specified
CRs.

Dependancy \\'eiehts

A "Weight" is established, by the project engineer, for each dependancy item
("fault") associated with the CR. This weight can be distributed evenly or selectively valued
for each item to identify its true impact.

The sum of the weights of the faults should always equal one for each Development
Line. A Development Line consists of all releases associated with a current or variant l ine
of development. For example, if internal releases 1 .0.0 El, 1 .0.0 E2, and 1 .0.0 Ql were
required In order to ship an external version called 1 .0.0, then those releases are deemed to
be part of the 1 .0.0 Development Line.

Calculations of CR quantities are generated by using the weight rather than the
number of CRs in the Change Request Master Table. This allows for identification and
tracking of partial change implementation for variant development l ines.

Status Chanees

The Change Request screen (Figure 5) is also used by the Project Engineer to
update the CR for the Review, Assign, Defer, Withdraw, Transfer and No Action Taken
statuses. Configuration Management uses this screen for updating Baseline and Release
statuses.

Miscell aneou s Data

Other Dependancy data not shown here are:

Reviewer, Review Date
Deferrer, Deferred Date, Deferred-To Date
Withdrawer, Withdrawn Date, Comment
Assigner, Assigned Date, Assignee, Fix For Date, Fix For Release
Fixer, Fixed Date, F ix Man Days
Fix Man Days
Basel ined Release Identifier
Customer Release Identifier

Figure 6 shows all of the fields used for each Change Request and dependant item.

40 -

D: Retrievin2 Specific Chan2e Request Information

Queryin2 the System

CMSYS provides a query mechanism which allows the user to retrieve almost any
combination of information from the database.

For example, the Selective Query shown in Figure 6, would retrieve all of the
"MAJOR (MAJ) " "PROBLEMS (PRB)" reported during the "SYSTEM-TEST (SYS)"
phase which were associated with the "CORE" System and released to the customer in
release "2. 1.0". This retrieval mechanism is very flexible._CMSYS provides pre-defined
queries such as "Active" (all Change Requests not yet Baselined) and "Full" (all Change
Requests regardless of their status).

Fil:ure 6 - Selective Query

Feedin2 Back Into the Process

The primary function of CMSYS is to collect useful information about the processes
and then feed it back in a form which promotes their improvement. An effective method of
doing this is to run a causal analysis of a specific system, subsystem or unit and determine
the processes that have failed, the types of defects injected during the process and, more
importantly, how badly they have failed. Figure 7 - Causal Analysis - shows the output of a
specific area. This output can then be used, for example, to generate initial review
checklist criteria or to determine error tendancies for specific modules and/or developers.

4 1 -

Fieu re 7 - Causal Analysis

Quality Metric G raphs

An excit ing featu re of CMSYS is its on-l i ne graph ing capab i l i t ies. Us ing th is, fou r
graphs depicti ng d i fferent views of the cu rrent qual i ty are provided :

(1) Change Request Summary (Figu re 8),
(2) Problem Distr ibution (Figure 9),
(3) Review Efficiency Index (Figure 10), and
(4) Qual i ty Index (Figure 1 1) .

Chanee Request Sum mary

The Change Request S u m mary (Figu re 8) graph provides the project engineer with
a visual feel for the status of al l change requests i n the system and to determine the amount
of change management that i s requ i red. This i s general ly performed on a da i ly basis by the
Project Engineer, Project Leader or the engineer responsible for admi n istrating the change
request database.

Problem Di stribution

The Problem Distribution (Figu re 9) graph i nd icates where active defects are
located withi n the systems, subsystems or u ni ts. I t i s helpfu l i n esti mat ing maintenance and
testi ng effort as wel l as po int ing out qual i ty problem areas. This graph is used by Qual i ty
Assurance to determ ine the relative qual i ty levels of a system and by Test Eng ineer ing to
determine any possible areas for future testi ng. Although th is graph is usual ly generated
immediately fol lowing a release, i t can be used on an ongoing basis to determi ne defect
d istribu t ions.

4 2 -

Fieu re 8 - Chanee Request S u m m ary G raph

Fieu re 9 - Problem Dist ribution G raph

Review Efficiency I n dex G raph

CMSYS generates a Review Efficiency I ndex (Figure 1 0) ind icat ing the effectiveness
of the software review process. I t i s calculated by subtracti ng the originating phase valu e
from the d iscovered phase value , summing t h i s for a l l problems, then divi d i ng the resu l t by
the total number of problems. For example, if a Requ i rements (valued " 1 ") problem is
found i n the Implementation process (valued "3 ") , the i r d i fference would be "2". This
essential ly means that two review processes fa i l ed to detect the problem. If this were the
case for al l exist ing p roblems in the database, the Review Efficiency I n dex would indicate

4 3 -

"2". The ideal number would be "0" indicating that a l l problems generated duri ng a specific
p rocess were found in that same processes review.

The series label led "Average" is a running average calcul ated from a g iven start date
whi le the series labelled "Actual" i s the actual value for the monthly range.

Fi2u re 1 0 - Review Efficiency I ndex G raph

Qual i ty I ndex G raph

CMSYS derives a Q u a l ity I ndex (QI) (Figure 1 1) by ass ign ing a weight to a problem
based on i ts crit ica l i ty to the user. The graph shows three i tems: "Reported", "NotFix", and
"NotFix 01".

The "Repo rted" value indicates the number of problems reported dur ing the past
week or month range.

The "NotFix" value i ndicates the number of problems which have not been
integrated i nto a specific internal release or basel ine. Problems which are in the p rocess of
being fixed and wi l l tentatively be integrated i nto an upcoming release are sti l l counted as
being "Not Fixed".

The "Not Fix QI" value counts those problems "NotFix" by count ing their severity
weights. For example, if a problem exists with a severity of critica l (Weighted " 1 0"), this
wou ld be reported as " 1 " i n the "NotFix" value but reported as " 1 0" in the "NotFix 01" value.

This graph plots data on a weekly, monthly or quarterly detai l l evel and, as i s the
case for all CMSYS functional i ty, is always current and on-l ine. When coupled with Lines
of Code (or the metric of you r choice) , quality levels can be monitored and baselined then
used for comparative analysis of projects, systems, subsystems, or un i ts . The results can be
used for establ ishing fu tu re qual i ty goals . We cal l this a "OJ Density".

This graph is ge nerated by the Project Engineer, Test ing Engineer and Oual i ty
Assurance both prior to and di rectly fol lowing a release to determine the current quali ty
level of a system, subsystem or u nit .

44 -

Fieu re 1 1 - Qua l i ty I n dex G raph

E. S uccesses and Chal lenees

Successes

We are cu rre ntly us ing the Q u a l ity I ndex to monitor the qual i ty level s of specifi c
products in the fie ld and under deve lopment. New project plans now i nclude a target
Qual i ty Index. As a company, we have set a target of 50% improvement i n del ivered QI
Density for each future release of these products. This sets an important precedent for our
company and establ i shes a quant ifiable qual i ty goal to wh ich we can strive.

DSI is us ing the Review Efficiency I n dex and has raised the goal for 1 99 1
development to " 1 .0" from " 1 .75". This means that we are str iv ing to catch a l l problems i n
the next phase's set o f reviews. CMSYS provides the capabi l i ty to monitor our development
processes very closely to ensure that they remain under contro l .

A major success of CMSYS has been the shift ing of problem hand l i ng from paper
shuffl ing at a departmental level to resolut ion at the software engineering level . All team
members have the ab i l i ty to view the level of qual i ty of the i r system, subsystem or un i t at
any t ime they desire and to respond efficiently. Senior managers can now get the "big
p icture" rather than be ing overwhelmed with "snap shots". Having a paperless system has
completely e l imi nated any lost or misplaced Change Requests and has tightened up our
maintenance and enhancement cycle. We can now p lan our future maintenance and
enhancement efforts effectively.

The generation of Vers ion Descript ion Documents (ident ifying changes between
releases of a product) is now a s imp le, qu ick process. In the past, th i s funct ion had been a
painfu l one - i t now can be performed in m inutes as opposed to days.

With CMSYS, we are charti ng and prominently d i splaying the fol lowi ng metrics on a
month ly basis :

Qual i ty I ndex Density
Review Efficie ncy Index
Percent of Suggestions Implemented

45 -

Our next step will be to organize our testing information into a more efficient,
reusable form and link it to the CMSYS environment.

On-line correlation with product metrics (Halstead's Software Science, McCabe's
Metric, LOC, ELOC, etc) still needs further investigation. We are still new at collecting
this data and expect that in a year or so we will know whether or not any correlations are
strong enough to be of use.

The question of how Object Oriented Programming will effect Configuration
Management needs to be answered. How will you report changes in a SmallTalk or C+ +
environment? Increased reusability requirements might result in more changes to a given
unit of code to make it worthy of reuse. Is this good or bad or merely a characteristic that
requires tracking in some fashion? What is a unit in an Object Oriented environment? We
look forward to the challenges.

Summary

This paper and its tangible results has demonstrated that collecting software process
and product metrics can be successfully automated and integrated into the day to day
development process. These metrics can then be used to drive improvements to the entire
software development process.

4 6 -

mGH INTEGRITY SOFIW ARE STANDARDS ACfNITIES AT NIST

John C. Cherniavsky, National Science Foundation
Washington, DC 20550

D. Richard Kuhn
Dolores R. Wallace

National Institute of Standards and Technology
Gaithersburg, MD 20899

ABSTRACf

This paper provides information about the National Institute of Standards and Technol
ogy (NIST) effort to produce a comprehensive set of standards and guidelines for the
assurance of high integrity software. In particular, the paper presents the results of a
Workshop on the Assurance of High Integrity Software held at NIST on January 22-23,
1991 and activities at NIST in support of assuring high integrity software.

BIOGRAPHIES

John C. Cherniavsky received his Ph.D. in Computer Science from Cornell University in
1972. He is the author of more than 30 papers in software engineering and theoretical
computer science. He was on the Computer Science faculty of SUNY Stony Brook from
1972 to 1980. From 1980 to 1984 he was Program Director for Theoretical Computer
Science at the National Science Foundation. From 1984 to 1990 he served as Professor
and Department Chair at Georgetown University. He has been associated with standards
activities at NIST since 1978. Currently he is the Program Director for the CISE Institu
tional Infrastructure program at the National Science Foundation.

D. Richard Kuhn is a computer scientist at the National Institute of Standards and Tech
nology, where he is involved with operating system interface standards, formal methods,
and computer security. He served on IEEE 1003.1 and 1003.2 POSIX committees, is
Secretary of IEEE 1201 .2, and received a Bronze medal from NIST in 1990 for work on
Open Systems standards. He received the M.S. in computer science from the University
of Maryland in 1985.

Dolores R. Wallace is currently Project Leader for Software Quality and Safety at the
National Institute of Standards and Technology leading an effort in the Assurance of
High Integrity Software. She has developed standards and guidelines for Software V & V,
Software Acceptance, and Software Management. She supports Federal agencies with
software product assurance. Previously she worked for the US Navy in computer appli
cations, especially graphics. She has chaired the COMPASS '90 Conference, served as
Co-guest Editor of a special issue of IEEE Software on Software V &V. She is an IEEE
seminar lecturer. She received her MS in mathematics from Case Western Reserve
University.

4 7 -

HIGH INTEGRITY SOFIW ARE STANDARDS ACfNITIES AT NIST

1. Introduction

John C. Cherniavsky, National Science Foundation
Washington, DC 20550

D. Richard Kuhn
Dolores R. Wallace

National Institute of Standards and Technology
Gaithersburg, MD 20899

The National Institute of Standards and Technology (NIST) has supported the develop
ment of standards for software verification and validation and computer security ([1] ,[2]).
Software has become more and more an integral part of our daily lives as it is used in
monitoring devices, in controlling devices, and in managing an ever more complex
society that is becoming critically dependent upon accurate information. This trend
requires better mechanisms to ensure the correct operation of software used in applica
tions requiring high integrity.

In the United States, particular attention has been placed on systems handling classified
data, military weapons systems, and nuclear reactor control systems. A number of stan
dards have been put in place that partially address the integrity of these systems ([3],[4])
and some research has begun in the area commonly known as "Software Safety" [5].

In Europe, the coming of a common European market in 1992 has precipitated work in
harmonizing disparate standards and in unifying criminal and civil liability codes [6].
These codes now apply to software developers in addition to the Professional Engineers.
These codes hold a software developer civilly or criminally liable if software that was
supposed to be of high integrity fails. In order to protect against lawsuits developers must
be able to show that proper procedures were followed in ensuring the integrity of the
software. These proper procedures imply that a standard for developing high integrity
software exists (which is not the case). United States firms doing business in Europe will
have to conform to these liability laws and will need to use whatever standard that is
eventually developed. A generic basis for such a standard will likely involve certification
as described in the ISO-9000-9003 quality contractual standards.

Both internationally and within the Common Market, the European Community has
active programs for investigating ways of producing high integrity software (through the
Esprit program) and in standardizing methods for producing such software. The standard
ization efforts range from the very specific proposals embodied in MOD-0055 and
MOD-0056 [7] to very generic quality standards embodied in the ISO 9000 series of
quality standards.

The approach embodied in the ISO 9000 series of quality standards is to develop guide
lines for third party certification. The third party certifies that quality controls are put in
place by the first party supplier of a product or service to a second party customer. The
ISO 9004 standard provides quality guidelines for incorporation into first party produc
tion practices. The licensing of the third party certifiers would be accomplished by
government or trade entities. Thus a customer requiring software meeting certain
integrity conditions would use a supplier who is certified to produce software at the
desired integrity level. United States firms marketing their software abroad will either
have to use these certification laboratories (which, in some cases, would require revealing
trade secrets) or depend on negotiated bilateral treaties where a United States methodol
ogy (based upon some standard) could be used to certify the integrity of the software.

NIST has been monitoring the development of European and International standards
activities for the assurance of high integrity software. In order to meet its responsibilities

4 8 -

under the Omnibus Trade Act of 1988, NIST has been involved in a number of activities
to develop the capability to ensure that software meets integrity constraints. In this paper
we report on three such activities: workshops for the development of standards and
guidelines for ensuring the integrity of software, the national voluntary laboratory
accreditation program, and the development of a formal methods laboratory. In light of
these activities, we discuss possible scenarios for the assurance of high integrity
software.

2. Workshop Report

With a Workshop on the Assurance of High Integrity Software at NIST on January 22-
23, 1991 , and a follow-on working group on June 28, NIST took a first step toward
involving a broad community of interested parties in the development of guidance for
assuring high integrity software. The purpose of this and future workshops is to provide
a forum for the discussion of activities that NIST plans to undertake to accomplish this
goal. The workshop participants will also be asked to comment on technical contribu
tions as they evolve. The results of these activities will be used to provide information to
officials responsible for how the United States should involve itself in international trade
agreements relating to software for which high integrity is required.

Participants at the first workshop represented Federal agencies, Canadian government,
academia, and industry. The participants were split into four working groups which dis
cussed the following issues:

1 . Techniques for developing and assuring high integrity software.
2. A cost-benefit framework for selecting techniques.

3. Controlled and encouraged practices for use in software development.

4. Techniques for criticality assessment and hazard analysis.

The Techniques group's task was to determine a method for describing and identifying
techniques for assuring high integrity. The Cost-Benefit group was charged with investi
gating means for selecting techniques and assurance methods based upon the cost of
those techniques and the benefits that accrue from the assurance those techniques can
give regarding the integrity of the software. The Hazard Analysis group was asked to to
identify both criticality assessment and hazard analysis techniques for high integrity
software. The Controlled and Encouraged Practices working group was responsible for
studying the forbidden practices of DEF STAN 00-55 [7] and identifying how best to
handle them. The working definition of high integrity software was "software that
operates exactly as intended without any adverse consequences, including when cir
cumstances outside the software cause other system failures" . Examples of requirements
for such software come from safety critical applications, security applications, and some
commercial applications where the cost of assuring high integrity is balanced by the
benefits of the assured higher quality and freedom from the consequences of software
failures.

2.1. Techniques Session

2.1.1. Overview

The Techniques working group considered development and verification techniques that
can be effective in the production of high integrity systems. A survey of participants
showed the following interests and application areas: security, communication protocols,
nuclear power systems, weapons systems, formal methods and tools research, railway
systems, avionics, independent validation and verification, and quality assurance. There
were no Techniques session participants from medical or financial application domains,
or from CASE tool vendors, although these are equally relevant areas. A template for
describing the characteristics of various techniques (figure 1) was adopted. In addition to

4 9 -

describing features of the various techniques, the template looks at how a technique fits
into a development organization by considering the personnel roles involved in its use
(e.g., specifier, verifier, coder). Advantages and disadvantages of tools were also con
sidered. To evaluate the effectiveness of the template, small groups were formed to
review seven methods considered useful for high integrity systems: Harlan Mills' Clean
room method; the four formal specification languages EHDM, FDM/lnajo, Estelle and
Larch; the Petri-net based tool IDEFO; and "traces", which can be used to formally
describe a system by specifying externally observable events.

HUW IT WUKKS
Conceptual basis
Representations used

- Text, graphics, etc.
- Executable

Steps performed
- Mechanics - "transform this to that"
- Synthesis and analysis steps
- Tools used

Artifacts produced
- Documents
- Data
- Representations

Roles involved
- Person to task mapping - example: specifier, verifier
- Skills required

WHAT IT ACHIEVES WITH RESPECT TO HIGH-INTEGRITY
Positive

- Errors identified
- Evaluation data produced
- Reuse possibilities

Negative
- Fallibility - common failures, gaps in knowledge, ...
- Bottlenecks - sequential steps, limited resources, skills, ...
- Technical barriers

Other techniques
- Required
- Supported

CURRENT APPLICABILITY OF TECHNIQUE
- Domain of application?
- Where is it being used? How? Where is it taught?
- Who is researching it? Why are they doing this?
- If not in use but has potential, then what changes are needed?
- Maturity:

Adapt/deal with change? How well does it scale?
Who can use it? How does it fit with, e.g. prototyping?

Figure 1. Proposed template for describing techniques

5 0 -

2.1.2. Review of Techniques

Mter completing the templates, some of the techniques were discussed by the full work
ing group, although time did not permit a discussion of all the techniques. The full report
on the techniques and their assessment is incorporated in the report on the workshop [8].

2.1.3. Discussion

The tools and techniques discussed have different strengths. All are useful for assurance
of high integrity software, although none is comprehensive enough to be used alone.
Proper matching of techniques to problems is needed. Application domain, project
organization, and personnel skills must also be considered. A high integrity software
assurance standard could identify a set of techniques and associate them with the prob
lems that the techniques acceptably address. The participants did not believe that any
particular set of techniques should be required for all high integrity software. Technolo
gies are not equally appropriate to all types of applications, so application domain
specific standards may be useful. Working group participants sought to make the tem
plate categories sufficiently detailed for intelligent selection of techniques, either by
developers or for application specific standards.

2.1.4. An Assurance Model

A model of assurance levels, shown in figure 2, was proposed. Working group partici
pants agreed that the proposed model does a good job of structuring assurance levels
based on formal methods. No claim is made that increased integrity is guaranteed by
higher levels of the model (since the model represents only one axis of a many dimen
sional problem).

, traces
a ams

Figure 2. Assurance levels with formal methods

2.1.5. Recommendations

The group prepared a set of recommendations for inclusion in a standard for high
integrity software. The recommendations are necessarily preliminary, but there was a
good deal of consensus among participants.

Respect the "practical assurance" limit. With current technology it takes about one year
of testing to assure that a system operates correctly for one hour (with a failure probabil
ity of one in ten thousand). It was noted that this can be bettered with N -version pro
grams if one assumes the independence of each version.

A standard should state characteristics of techniques and require arguments as to why a
technique selected is appropriate. The group felt that techniques are not equally applica
ble to all application domains. A developer who wishes to claim conformance to a high
integrity software standard will need to describe the characteristics of the application and
give a convincing argument as to why the techniques used are appropriate.

A clear implication of this recommendation is that a single all-encompassing standard for
high integrity software is not practical unless it is simply a catalog of techniques.

5 1 -

Requirements for specific techniques will need to be based on application domain charac
teristics. This is in line with the "framework" approach of having a standard that gives
general requirements, supplemented by standards at an appropriate level of specificity for
different application areas.

Evaluate and track on-going applications of techniques. It is essential to monitor appli
cations of different techniques to determine which are most cost effective for different
applications. An equally important aspect of tracking applications is to make techniques
more widely known in the industry. Many significant techniques are little used today
because practitioners are not aware of them, or because they are perceived as too expen
sive or impractical. Measuring the costs and benefits associated with various techniques
will allow decisions to use techniques to be based on sound data rather than guesswork.

Distinguish between techniques used to eliminate design flaws and techniques used to
maintain quality in the presence of physical failures. High integrity systems will require
the use of both types of techniques. Determining the optimal tradeoff between fault
tolerance and fault elimination for a particular application is a challenging problem.
Experience and empirical research will be necessary for designers to make this tradeoff.
A standard should provide a selection of both types of techniques, and guidance should
consolidate experience to help developers make choices between the techniques.

It was noted that the most important part of a recommendation on techniques is to point
out fallibilities. All techniques have limitations; by noting these, developers will be able
to compensate for the limitations or at least attach appropriate caveats for purchasers.

It was also recommended that a notation to express what techniques were used at dif
ferent stages of the lifecycle be developed. Such a notation would facilitate specification
of development requirements, and could also be used to characterize developments to
make it easier to compare projects.

2.2. Cost-Benefit Session

The Cost-Benefit group addressed the following topics:

• definitions

• model for cost-benefit

• experiment applying a standard

• relationship of cost-benefit to workshop and to a standard.

2.2.1. Definitions

Definitions of the basic terms and concepts need to be established so that the scope and
frame of reference for a standard will be clear. The working group has suggested
definitions for cost, benefit, high integrity, software, relevant application domains, and
users of the standard. The final standard must identify terms and their definitions that
may exist with different definitions in other standards. The definitions appear in the full
report.

2.2.2. Model

The Cost-Benefit working group was pessimistic that one standard can satisfy all applica
tion domains, development environments, and user environments. The group discussed
how to provide users of a standard with sufficient guidance for selecting development
and assurance techniques that are affordable and suit the assurance needs of a user. A
model was proposed for determining the costs and benefits of techniques for assuring
high integrity software. The foundation for this model is described in three papers
[9, 10, 1 1] The model, shown in figure 3, illustrates how to find the minimum of the cumu
lative cost of failures per unit time. The working group recommends use of this model

5 2 -

only as a starting point for identifying the parameters that must be built into a selection
framework.

cost

10-9
Set A

cumulative cost

10-8
Set B

Pr [Hazard Occurrence/Unit Time]

- - -

10-7
Set C

- - - - - - - - - - - - - - -

1�
Set D

Figure 3. Proposed cost-benefit model for technique selection

- - -

A complete model must associate techniques with error types, application domains, and
other items relative to a supplier's environment. One suggestion is to associate a proba
bility of failure with a set of techniques as indicated in figure 3. Considerable research is
necessary to determine exactly what those techniques are. The original objective was to
associate a required level of assurance with a set of techniques. Is a level of assurance
identical with a probability of failure per unit time? That is, is all assurance simply a
matter of reliability?

Another issue concerns the grouping of methods in general. For example, will techniques
highly suited to locating timing errors, a concern of many critical real time systems, be
included in Set A? Will others be included in Set B? Extrapolation of this brings up the
question: What error classes will be covered by techniques in each of the sets? It may be
the case that no obvious clustering of techniques occur because the techniques are best
characterized multi-dimensionally and scattering occurs. Can application domains be
characterized by their error classes? Does a set of methods then refer equally to applica
tion domains and to error classes? Of course, this model focuses on errors, whereas other
requirements for assurance may focus on specific qualities (e.g., maintainability, portabil
ity, efficiency). It is not immediately obvious that this model, even with sets of tech
niques, will accommodate selection of techniques based on the qualities they support.
How should applicability of any set of methods be described?

Further development of this model requires the collection of data on failures of systems,
types of techniques for development and assurance and the errors they prevented or
discovered, and the costs associated with the failures and successes. One possible source

5 3 -

of data is the NASA Goddard Space Flight Center's Software Engineering Laboratory
[12]. It is not clear if the data collection task should be pursued with the intent that such
data would result in a "hard-coded" framework or if the objective should be to lay out a
model that users may tailor to their own projects. In this case, users would study data
from their environment; that data would have to be of the same type already identified
but on a much smaller scale. According to Dr. Victor Basili, due to differences in
environments, experiences satisfactory in one environment may become unsatisfactory in
another [13] . The working group needs to study how problems such as these will affect
generic models.

2.2.3. Experiment

Implementing a standard may mean major changes in the way software is developed and
assured. Suppliers may have to provide specialized training for their staffs, and may
have to invest in software tools. Training may be needed to help managers understand
scheduling for new tasks, new ways of doing traditional tasks. Some of the proposed
requirements may be difficult to implement and may not be affordable. The working
group strongly recommends that a draft standard should be applied to an industry project.
Data from this experiment should influence changes to the draft. The basic structure of
the experiment is shown in figure 4.

WHY

• Trial run of the standard to show feasibility

• Acquire performance and cost data on proposed methods

WHAT

• Development according to a draft standard of a realistic sample product in a typical
industrial setting

• Measurement of predefined metrics and acquisition of relevant artifacts.

HOW

. NIST, industry, academia form a team

• Find funding

• Prepare strawman draft standard in parallel with planning/preparing experiment

Figure 4. Proposed structure for trial use of draft standards

2.2.4. Session Summary

The Cost-Benefit group strongly recommends that the fundamental terms be defined first,
especially software safety. The definitions will define the scope of standards for high
integrity software.

The Cost-Benefit group considers the model in figure 3 a starting point for determining
selection of techniques. Support of this concept will require the collection of data, much
of which may not be easily available. Cost may not be quantifiable or even predictable
(Le., it might be intangible). Other ways of measuring the input to a framework should be
considered. The concept of a framework itself implies the development of several stan
dards and guidelines.

5 4 -

Development of standards for high integrity software must also include means of demon
strating conformance to the standards. It must be shown that the requirements of these
standards can be met at reasonable cost.

2.3. Controlled and Encouraged Practices Session

This session's charge was to review the history and international standing of practices
which have been forbidden or discouraged by some software development standards.
Examples of these practices include intecupts, floating point arithmetic, and dynamic
memory allocation. A well known example of a standard containing such prohibitions is
the British Ministry of Defence DEF-STAN-0055*. The DEF-STAN-0055 prohibitions
were based upon the difficulty of assessing code that uses these programming practices,
not because the practices themselves are inherently dangerous.

Mter review and discussion of other standards and their approach to error-prone prac
tices, the group redefined "forbidden practices. " The new definition hinged on the con
cept of "controlled" versus "forbidden" practices. No one believed that all instances of
the "forbidden practices" were in fact unsafe, and those that currently are, may be safe in
the future if certain technologies develop. This view reflects the comments from the
Institution of Electrical Engineers (lEE) and other organizations concerning the DEF
STAN-0055 standard. Other standards discourage but do not prohibit certain practices.

The group adopted this definition of a Controlled Practice:

A Controlled Practice is a software development procedure which, when used
in safety-critical systems in an inappropriate manner, results in an increased
level of risk. This practice is one which can reasonably be expected to result in
a safety hazard, or, is not demonstrably analyzable.

2.3.1. Encouraged Practices

Certain software practices, although not inherently dangerous, are generally recognized
as increasing the incidence of software failure and hence the risk in safety-critical sys
tems. These same practices may be less error prone when certain checks and balances are
employed in their use. That is, these "risky" practices inject a certain error type and may
only be used in conjunction with other practices which have been shown to detect, miti
gate, or counter the error type injected.

Initially the group thought that "encouraged practices" could also be required to offset
"controlled practices" in certain circumstances. Later discussion showed that some
"good" practices (e.g., use of higher order languages), should be encouraged but not
forced or controlled as tightly. Thus, group consensus allowed the change to "Controlled
and Encouraged Practices." It was later noted that this would allow developers to choose
various combinations of techniques (some familiar to them and others not familiar) as
long as the error types were "covered".

2.3.2. Software Integrity versus Controlled and Encouraged Practices

The group decided many factors influenced the risk of the same practice in different
domains and applications. A matrix was formed in which such factors would allow a
developer to select enough countering practices to allow the use of a "controlled" (not
forbidden) practice. This matrix is driven by the level of software integrity required.

* At the time of the workshop, the participants had access only to the Draft DEF-ST AN-OOSS, and
addressed the "forbidden practices" issue accordingly. The recently-released INTERIM
STANDARD DEF-ST AN-005S has relaxed its policies on discouraged or forbidden practices.

5 5 -

The required software integrity level is a result of the hazards identified with the system
and allocated to the software (and hardware) (sub)system under design.

2.3.3. International Issues

There was a consensus that the view of "controlled and encouraged practices" expressed
in the working group is different from that in the international standards reviewed.
Accommodation of this difference requires two definite steps:

1 . The definitions of controlled and encouraged practices must map onto all known
standards which have such concepts, and

2. The international community must be made aware of the intent of these
redefinitions.

Item 2 raises a particularly strong issue because the DEF STAN 0055 forbids practices
while a U.S. standard will probably allow practices with certain rigorous development
practices. This seems to be diametrically opposed and may preclude mapping one to the
other. While the DEF STAN 0055 is a draft standard with comments being addressed, it
is being considered as a baseline for European Economic Community (EEC) standards.
Thus, NIST should move to promote public discussion of differences and coordinate less
strict status on certain practices.

2.3.4. Session Summary

The group advised continuing its own efforts on development of concepts, mapping of
integrity level to techniques and to controlledlimcouraged practices and mapping to
other standards. A list of controlled/encouraged practices should be prepared for con
sideration by the Techniques group. There must be discussion of unresolved issues (e.g.,
indirect effects of proposed control of listed activities and indirect hazards of such
software as finite element analysis tools used on passenger aircraft or highway bridges).
The relevant nationaVinternational organizations developing related or similar standards
need to be contacted.

2.4. Hazard Analysis Session

The working group on Hazard Analysis had the task of defining the terms and techniques
for hazard identification and analysis of software for which assurance of high integrity is
desired. Experts from both the military and civilian sector were present. Two documents,
MIL-STD-882B [3] and the "Orange Book" [4] , were used as initial examples of the
activities that might be present in dealing with hazard analysis. Although the Orange
Book does not directly address hazards, the fact that it describes assurance levels for cer
tain types of potential security breaches makes it relevant because, as mentioned in
DEF-STAN-0055 [7], security breaches can be viewed as hazards. The initial objective
of the session was to identify techniques for:

1 . identifying hazards,

2. classifying hazards,

3. identifying critical systems,

4. determining how much analysis is necessary,

5. determining where to do analysis, and

6. conducting trade-offs.

In order to accomplish this objective, agreement was needed on many of the terms. In
particular, the terms hazard, risk, and criticality all needed definition in the context of
high integrity software. Analogies were drawn from a number of areas in pursuit of

5 6 -

common definitions to apply to high integrity software. From the system safety area
hazards and risks are well defined in MIL-STD-882B. The events to be avoided are
injury and death; the hazards are elements of the environment that can cause these
events. From the perspective of a mission during wartime the events to be avoided are the
inability to fulfill a mission and the hazards are elements of the mission environment that
can cause these events. >From the perspective of security the events to be avoided are
security breaches and the hazards are elements of the environment whose presence or
absence can allow these events to occur. From the perspective of the manufacturer of
consumer products containing embedded �oftware, the events to be avoided are losses
caused by deficiencies in the product that result in financial losses and the hazards are
elements of the products environment that could allow these events to occur. These
events could be as simple as a ROM error in a chip in a washing machine requiring a
recall costing $ l00/machine. The events to be avoided are called mishaps.

2.4.1. Basic Notions of Hazard Analysis

Given the wide variation in the events to be avoided, the following definitions of mishap
and hazard were adopted.

Mishap - An unintended event that causes an undesirable outcome.

Hazard - A condition that may lead to a mishap.

Given this definition of hazard, the notion of risk is defined to be a function of the hazard,
the vulnerability to the hazard, and the opportunity for the associated mishap to occur.
The vulnerability and opportunity are assessed together to obtain a probability of the
mishap occurring. Once a rough probability has been obtained, decisions are made as to
the criticality of the hazards in order to determine whether actions are necessary to miti
gate the hazard (or if the consequences are sufficiently severe, not to build the system).
As an example, consider a nuclear power reactor and the hazards posed by meteor strikes
and earthquakes. The vulnerability of the reactor to a meteor strike is high while the
opportunity of the mishap occurring is very low. Thus actions aren't taken to mitigate
the hazard (reactors aren't built under a mile of rock) even though the consequences of
reactor failure are severe. The vulnerability of a reactor to an earthquake is high and the
opportunity for occurrence, particularly on fault lines, is sufficiently high with conse
quences sufficiently severe (a function of the hazard) that actions are taken, such as
building away from fault lines, to mitigate the hazard.

One method of performing this analysis involves building a hazard criticality chan, as
illustrated below in figure 5. The method is described further in MIL-STD-882B.

The letters A-E stand for probabilities of a particular hazard resulting in a mishap. A is
the most frequently occurring (nominally "frequent") while E is the least frequently
occurring (nominally "improbable"). The Roman numerals I through N represent the
severity of a mishap caused by the hazard. For the safety concerns of MIL-STD-882B, I
stands for death or system loss, II stands for a severe occupational illness or major sys
tem damage, III stands for minor injury or minor system damage, IV is negligible injury
or damage. The regions labeled 1 to 4 are determined by policy. In MIL-STD-882B
region 1 is unacceptable, region 2 is undesirable, region 3 is acceptable with approval,
and region 4 is acceptable. For each hazard, determined by a careful analysis of the
environment in which the system is operating, such a chart is drawn up. Values for the
probabilities of a hazard occurring and the severity of a mishap arising from the hazard
are determined. If these are in the unacceptable or undesirable range then steps must be
taken to mitigate the severity of the mishap and/or reduce the probability of the hazard
resulting in a mishap.

5 7 -

I

II

III

IV

A B C D

1 2

2

2 3

3 4

Figure S. Hazard Criticality Chart

E

I

This same hazard analysis chart can be adapted to high integrity domains outside of
safety. What needs to be identified are the roman numeral categories I to IV. For exam
ple, to analyze hazards for military missions I would correspond to an inability to fulfill
the primary mission capabilities (e.g., field an army in a war zone), II would correspond
to an inability to fulfill a secondary mission (e.g., an impaired offensive capability
against a collection of targets), III would correspond to an inability to fulfill support
functions, and IV would correspond to an inability to fulfill administrative functions. In a
consumer product the categories I to IV could correspond to I: product causes death or
injury, II: product causes damage resulting in financial loss to consumer, ill: product
does not perform its function resulting in financial loss to company, and IV: product does
not satisfy a few consumers in ways unrelated to functionality, cost, or death or injury.

It is possible that five probability levels and four mishap severities do not result in a good
modeL One may want to refine or coarsen the granularity of these categories. The princi
ple underlying constructing such modified hazard analysis charts can be extrapolated
from the above examples. It must be emphasized that not only must the chart be care
fully constructed, but also the policy of accepting or rejecting the hazards (labeling the
regions) must be clearly articulated.

Techniques for identifying and classifying hazards and for determining the risk associ
ated with hazards is domain dependent. Generic methods include "lessons learned" (his
torical information about previous mishaps), analysis of energy barriers and the tracing
of energy flows (mishaps are frequently associated with energy release or containment),
previous system analyses, adverse environment scenarios, general engineering experi
ence, and tiger team attacks (essentially brainstorming).

Specific techniques in tracing possible effects of hazards and isolating those effects have
been developed over the last 40 years. These include fault tree analysis, failure modes,
effects and criticality analysis, event tree analysis, and hazard and operability studies. At
the code level formal proof of correctness and various data and control flow analyses can
be performed [5]. Isolating parts of the system responsible for assuring high integrity is
an important method of limiting the complexity of the analysis necessary for assurance.
This is exemplified in the notion of a Trusted Computer Base that is integral to the
TCSEC ("Orange Book") [4] standards. The design techniques described in the TCSEC
include the isolation of critical functions in kernels, assurance of module independence
ideally through referential transparency of modules, and the general isolation from access
of critical software and data.

5 8 -

2.4.2. Lifecycle Hazard Analysis Activities

An assessment of hazard criticality is required during all phases of software develop
ment. Hazards to be avoided or mitigated must be identified. This implies that there is a
strong traceability requirement for hazards that must be avoided or mitigated. This also
implies documentation requirements at all lifecycle phases for hazards being traced.
Modifying the language of the software systems safety community, it is necessary to
have a Software Integrity Preliminary Plan, Software Integrity Subsystem Plans,
Software Integrity Integration Plans, etc. as described in MIL-STD-882B and in the
workshop report.

Throughout this process, standard software quality assurance activities are followed.
Quality assurance is a prerequisite for high integrity software. Assurance includes check
ing that the software addresses the hazards, and developing tests that "exercise" the
software in response to external events that may lead to a hazard (i.e., ensuring that all
hazards are "covered"). This testing requires (as does traceability, etc.) isolating the
software that addresses hazards. This isolation also allows for more intensive validation
activities, such as the use of formal specification or even the formal proof of high
integrity properties, to be used.

3. National Voluntary Laboratory Accreditation Program

Standards provide a means of specifying requirements for software development and
acquisition. A standard will make it possible for industry and government organizations
to have uniform quality requirements for high integrity software. But a standard provides
little benefit without a means of ensuring conformance to the standard. Developers and
other organizations have been responsible for verifying compliance to a standard.
Because the cost of showing conformance may be prohibitive for purchasers to conduct
conformance tests on their own, laboratories have been set up to show conformance. In
the electrical products industry, Underwriters Laboratories tests products for confor
mance to standards. Buyers can have confidence that a product with U.L. approval meets
a minimal safety and quality standard.

The European community is now establishing software testing and certification labora
tories. In the U.S., various government and industry organizations have begun similar
efforts for their areas of concern. The FDA has established software testing criteria for
medical device software; the National Computer Security Center funds evaluations of
secure systems developed to the requirements of the "Orange Book."

In its role as the nation's measurement and test laboratory, NIST established the National
Voluntary Laboratory Accreditation Program (NVLAP) in 1976. The objective of
NVLAP is to improve the efficiency and reduce the cost of conformance testing by
accrediting testing laboratories. Vendors can submit products that claim conformance to
a standard to a NVLAP accredited lab. The lab conducts tests and evaluations of the pro
duct, then submits the results to NIST for certification. The NIST certification provides a
minimal assurance to purchasers that the product conforms to the standard.

Although originally intended for accrediting labs that do testing of chemicals, metals,
and other physical products, NVLAP has been extended to the software industry.
Laboratories for testing conformance to the government's Open Systems Interconnect
(OS!), GOSIP, were accredited in 1990. POSlX operating system interface conformance
testing labs are being accredited in 1991. NVLAP conducts a thorough evaluation of a
lab's personnel and equipment to ensure that the lab is competent to test conformance to
a particular standard. Once a high integrity software standard is in place, NVLAP
accredited laboratories could provide a cost-effective means of ensuring that software
products conform to the standard.

5 9 -

---- - - - --- ----

4. A Formal Methods Laboratory

Fonnal description methods have been suggested as techniques for producing high qual
ity software. NIST has begun evaluation of a number of systems supporting fonnal
methods for the development of software. These systems include nuPrl, FDM, EHDM,
and Estelle. There are three aspects to this work: evaluation of fonnal methods and tools
through use in " real world" software development projects; construction of additional
tools; and the specification of standards in a fonnal language.

Previous projects include formal verification of the design for a smartcard-based access
control system [14] , the specification of a message authentication device [14] , and the
fonnal specification of the ISO Transaction Protocol (ISO 1(026). To assist in evaluat
ing software for confonnance to security standards, a suite of static analysis tools has
been developed [15], and a program slicing tool is currently being completed [16] .

The fundamental mission of NIST has always been to develop methods for the precise
specification of standards, and to support precision measurement and test procedures
used to show conformance to standards. With few exceptions, the semantic content of
software standards is expressed in natural language (although the syntax may be defined
fonnally.) This typically results in ambiguities that lead to incompatibilities among
implementations from different vendors, and inconsistencies between test suites
developed by different organizations. To ensure that implementations are consistent and
confonnance tests are equivalent, standards must be expressed in an unambiguous nota
tion. This point has been recognized by others [17]. An effort in this area is the
specification of the Federal Information Processing Standard 140- 1 , " Security Require
ments for Cryptographic Modules" [18] . Some standards are deliberately defined to
have some ambiguities. In these cases, a fonnal specification may be harmful. The above
comments apply to standards in which precision overrides flexibility.

An ultimate goal of this work is to develop two capabilities. The first is the capability to
express standards in a fonnal language. Actual implementations of systems can then be
validated using the fonnal specification and tools available from systems such as FDM.
The second is to evaluate these systems and make recommendations regarding their
appropriateness, cost, effectiveness, strengths and weaknesses for developing high
integrity software.

5. References

[1] "Guidelines for Lifecycle Validation, Verification, and Testing of Computer
Software," FIPSPUB 101, National Bureau of Standards, Gaithersburg, MD 20899, 1983.

[2] "Data Encryption Standard," FIPSPUB 46- 1 , National Bureau of Standards, Gaithers
burg, MD 20899, 1988.

[3] Mil... SID 882B, Task 308, Software Safety Requirements Traceability Matrix and
Analysis - DOD HBK-SWS, 20 April 1988, Software System Safety, Department of
Defense.

[4] US DOD Trusted Computer System Evaluation Criteria, DOD 5200.28.SID.

[5] Leveson, Nancy, "Software Safety," Computing Surveys.

[6] Robertson, Ranald, "Product Liability in the UK - Issues for Developers of Safety
Critical Software", COMPASS 90, IEEE, pp 178- 1 8 1 .

6 0 -

[7] Draft Interim Defence Standards 00-55 and 00-56, Requirements for the Procurement
of Safety Critical Software in Defence Equipment, Requirements for the Analysis of
Safety Critical Hazards, Ministry of Defence, Room 5 150A, Kentigem House 85 Brown
Street, Glasgow G2 8EX, May 1989.

[8] Wallace, Dolores R., D. Richards Kuhn, and John C. Cherniavsky, "Proceedings of
the Workshop on High Integrity Software; Gaithersburg, MD; Jan.22-23, 1991" , NIST
SP 500-190, National Institute of Standards and Technology, Gaithersburg, MD, 199 1 .

[9] Hecht, Herbert, "Figure of Merit for Fault-Tolerant Space Computers," IEEE Tran
sactions on Computers, Vol C-22, No. 3, March 1973, pp 246-25 1 .

[to] Hecht, Herbert, "Allocation of Resources for Software Reliability," Proceedings
COMPCON Fall 198 1 , IEEE, 198 1 .

[1 1] Hecht, Herbert, "Effectiveness Measures for Distributed Systems, " Symposium on
Reliability of Distributed Software and Database Systems, IEEE, 198 1 .

[12] Humphrey, W.S ., et. al., "A Method for Assessing the Software Engineering Capa
bilities of Contractors," CMU/SEI-87-TR-23, Software Engineering Institute, Pittsburgh,
PA, 1987.

[13] Basili, Victor R., "Software Development: A Paradigm for the Future," Proceedings
13th Annual International Computer Software and Applications Conference (COMP
SAC), Orlando, FL, IEEE, September, 1989.

[14] Kuhn, D. Richard and James F. Dray, "Formal Specification and Verification of
Control Software for Cryptographic Equipment," 6th Annual Computer Security Appli
cations Conference, IEEE Press, 1990.

[15] Kuhn, D. Richard, "Static Analysis Tools for Software Security Certification," 1 1th
National Computer Security Conference, NSAINIST, 1988.

[1 6] Lyle, James and Keith Gallagher, "Using Program Slicing in Software Mainte
nance," IEEE Transactions on Software Engineering, Aug. 199 1 .

[17] Blyth, D., C. Boldyreff, C. Ruggles, and N . Tetteh-Lartey, "The Case for Formal
Methods in Standards," IEEE Software, Vol. 7, No. 5 (Sept. 1990).

[1 8] "Security Requirements for Cryptographic Modules," FIPS 140-1 (draft, 1990),
National Institute of Stanrds and Technology, Gaithersburg, Md. 20899.

6 1 -

Stephen A. Bender, CQA
S t e v e Be nde r , P re s i d e n t o f The Qu a l i t y C o n ne c t i o n , i s a man a g e m e n t
c o n s u l t a n t a n d v e t e ran i n the Qual i t y A s s u r a n c e f i e l d . H e h a s
p a r t i c i p a t e d i n a r e a s rang i ng f ro m o p e r a t i o n s , p r o g r amm i ng ,
ana l y s i s , and p ro j e c t d i r e c t i o n t o t ra i n i ng mana g e me n t , w o rk f l ow
s i mpl i f i c at i o n , p r o f e s s i o n a l f ac i l i t a t i o n , mana g e m e n t d e v e l o pme n t ,
and e x e c u t i v e s t a f f . H i s e x pe r i e n c e i n p s yc h o l o g y i s s u e s r e l e v an t
t o t h e t e c hn i c a l w o r kp l ac e i s e x t e n s i v e . W i t h s i g n i f i c ant
expe r i e n c e i n T o t a l Q u a l i t y M a n a g e me n t , and o v e r 2 0 y e a r s
expe r i e n c e i n t h e d a t a p r o c e s s i ng f i e l d , h i s i nt e r ac t i v e s t y l e i s
we l l known t o t ho u s an d s o f a t t e n d e e s .

H e has b e e n an a c t i v e s e m i na r and w o r k sh o p l e ad e r and k e yno t e
spe ake r f o r t h e C ompu t e r S e c u r i t y I n s t i tu t e , t he Wo r k i n Ame r i c a
I n s t i t u t e , and the Qual i t y A s s u r a n c e I n s t i t u t e , S t a t e and F e de r a l
Gove r nme n t s , a n d nume r o u s pe r s o n a l , p ro f e s s i o n a l , a n d bu s i n e s s
o r g an i z at i o n s and c o rp o r a t i o n s . H e a c t i v e l y t e a c h e s and c o n s u l t s
i n the p r i nc i p l e s o f T o t a l Qu a l i t y M a n a g e m e n t (TQM) b e f o r e a numb e r
o f Fo r t u ne 5 0 0 c ompan i e s , i nc l u d i ng t e c hn i c a l qual i t y aw a r e ne s s and
t o o l s t r a i n i n g , and human r e s o u r c e d e v e l opment (c u l t u r e c ha ng e) f o r
TQM , i nc l u d i n g p r e p a r a t i o n f o r t h e B a l d r i g e Q u a l i t y Awa r d .

H e h a s e d i ted and c o n t r i b u t e d mat e r i a l f o r b o o k s o n t e s t i ng ,
s t andard s , human re s ou r c e s , and o n c omput e r a s s e s sm e n t o f mut u a l
fund s , and w r i t t e n f o r Go ve rnme n t a n d Comp u t e r n e ws , t he QA I

Jo u rn a l , In du s t ry r�'e e k , the Cap i t a l D i s t r i c t B u s i n e s s R e v i e w ,

A u e r ba c h and o t h e r s . H e i s autho r o f To t a l Q u a l i t y , a n a t i o n a l l y
adve r t i s e d Aud i o Tape s e r i e s o n qu a l i t y o f p e r s o n a l and
p r o f e s s i o n a l l i f e (s e e n on CNN , L i f e l i ne , and Channe l Ame r i c a) .

S t e v e c h a i r s the PEOPLE t ra c k f o r t he Q u a l i t y A s s u r a n c e I n s t i tu t e ' s
N a t i o n a l C o n f e r e nc e , and i s a l s o a me mb e r o f t h e i r B o a r d o f
Adv i s o r s . H e i s a C e r t i f i e d Q u a l i t y Ana l y s t , and a C e rt i f i e d
M a s t e r P r ac t i t i o n e r and T r a i ne r o f N e u r o - L i ng u i s t i c P r o g r amm i ng
(N LP) , the w o r l d ' s mo s t e f f e c t i v e p r o c e s s f o r c ommu n i c a t i o n and
b e hav i o r / c u l t u r e c hang e . T o o u r knowl e d g e , he i s t h e o n l y o ne i n
t h e wo r l d j o i n t l y c e rt i f i e d a s b o t h a T r a i ne r o f N L P and a
C e r t i f i e d Qual i t y Anal y s t . I n add i t i o n t o h i s Q u a l i t y A s s u r a nc e ,
c o n s u l t i ng , and t e a c h i n g r o l e s , he i s a n a c t i v e c ou n s e l o r u s i ng
NLP .

M o s t r e c e n t l y , S t e v e has c o nduc t e d a w o r k s ho p o n Q u a l i t y i n
Z e rmat t , Sw i t z e r l and b e f o re membe r s o f 1 5 c ou nt r i e s , h a s w r i t t e n
f o r Pro du c t i v i t y SA o f S o u t h A f r i c a , and h a s b e e n i nv i t e d t h e r e t o
improve c o r p o r a t e qu a l i t y f o r t h o s e w i sh i n g t o e n d Ap a r t h e i d .
A l though u n ab l e t o a t t e nd , he had b e e n s e l e c t e d t o j o i n a
de l e g a t i o n o f Ame r i c an s t o d i s c u s s qu a l i t y b e f o re t h e S o v i e t U n i o n
and Be l g ium , a s p a r t o f t h e C i t i z e n ' s Amb a s s a d o r P ro g ram c h a i re d b y
P re s i de n t R e a g a n . I n add i t i o n , he a s r e c e nt l y c ha i r e d t h e To t a l
Qu a l i t y fo r Fi n an c i a l S e r v i c e s Ex c e l l en c e c o n f e r e n c e i n N e w Y o r k
C i t y .

6 2 -

Mak i n g Qua l i ty
Gett i n g i t

Come A l i ve :
to St i c k

I . P o c k e ts of Q u a l i t y
O u t l i ne

A . Bottom u p i nv o l v e me n t a l o n e - f r u s t r at i n g

B . T o p down i n v o l vement a l o n e - th i s too w i l l pass

C . P ro p e r r o l e of t h e advoc ate a n d s p o n s o r

I I . T r a i n i n g i n Qu a l i t y t h at S t i c k s

A . C o n t e n t

1 . C o s t s of F a i l u r e

2 . P ro c e s s v s . P ro d u c t

B . De l i ve r y

1 . P e r so n a l e x am p l es i n p ro d u c ts a n d s e r v i ce

2 . E v e r y d a y e x am p l e s a n d metap h o r s

I I I . P rac t i c i n g R e s u l ts t h at S t i c k

A . Con g r ue n c y - wa l k t h e t a l k - d on ' t rewa r d f a i l u r e

B . F re d Sm i th ' s 3 p r i n c i p l es

C . Empowe r i n g i n d i v i d u a l s - t r u s t

I V . Meas u r i n g R e s u l ts w i th A u th o r i t y

A . R i g h t mes s ag e , w ro n g p e r s o n ?

B . C o n t r i b u t o r s a n d R e s u l ts

V . S e l l i n g B e n e f i ts I n te r n a l l y

A . W h a t s e l l s y o u r t e e n ag e r ?

meas u r i n g k e y s t r o k e s "

B . A ct i v e p a rt i c i p at i on a n d own e r s h i p

C . W a l k i n t h e o t he r ' s s hoes

Po r t l a n d Q u a l i t y C o n f e r e n c e
Mak i ng Qua 7 i ty Come A 7 i ve

6 3 -

I t i s n o t u n u s u a l f o r q u a l i t y p ro g r ams to e x i s t h e r e a n d t h e r e i n

a n o r g a n i z a t i o n , b u t n o t e v e r yw h e re . T o t a 1 Qu a l i t y M a n ag e me n t

i mp l i e s h av i n g i t n o t on l y i n a l l a re a s i n t h e p h y s i c a l p l a n t , b u t

a 1 s o a l l a re a s f u n c t i o n a l l y : p ro d u c t s , se r v i c e s , e x t e r n a l

c u s tome r s , i n te r n a l c u s t o me r s , att i t u d e s , be h av i o r s , a n d i n te r p l a y

amon g i n d i v i d u a l s .

W h e n on 1 y p o c k ets of q u a 1 i t y e x i s t , i t i s o f t e n d u e to b o ttom- u p

i n vo l veme n t and ow n e r s h i p , a n d i t c a n o n l y g o u p s o f a r . T h i s

f r u s t r ates i n d i v i d u a l s , a n d g i ve s t h e m t h e i mp re s s i on t h a t o t h e r s

d on ' t c a r e a b o u t q u a l i t y . W h e n s t a r ted o n 1 y at t h e t o p , i t may

a l so be v i ewed as " j u s t an o t h e r man a g e me n t p r o g r am " , a n d " th i s too

w i 1 1 p a s s . W h e n t a k e n t o g e t h e r , i t w i l l h a p pe n . U n l i ke

manageme n t p r i n c i p l e s , w h i c h s how u s g oo d man a g e r s a r e made , n o t

bo r n , q u a l i t y p r i n c i p l e s i n m o s t p e o p l e a r e b o r n , t h e n " u n made . "

H ave y o u e v e r seen a n y o n e d o i n g a r e a l l y l ow q u a l i t y h o b b y ?

A t a n y g i v e n l ev e l , t h e r e may b e a n e n t h u s i as t i c s p o n s o r o r

advoc ate fo r q u a l i t y . Rece n t s t u d i es s h ow t h at t h e mo r e v i s i b l e

t h e s p o n so r , t h e mo r e h e / s he t a k e s c re d i t f o r t h e s u c c e s s e s , t h e

mo r e l i ke l y i t i s to f a i l . Ge t t i n g b u y - i n f r om t h o s e w h o r e s i s t

c h a n g e d e p e n d s u p o n av o i d i n g t h e " s t a r " s y n d r ome , e v e n w h e n i t i s

o f f e r e d . W h e n a c r i t i c a l mas s of p e o p l e move b e h i n d q u a l i t y

p r i n c i p l e s , i t becomes i n s t i t u t i on a l i z e d . O t h e rw i se , t h o s e w h o

a d a p t l ate may p u s h t h e e f f o r t b a c k a n d c a n c e l i t .

Po r t l an d Qu a l i t y C o n f e r e n c e
Ma k i ng Qua l i ty Come A l i ve

6 4 -

Befo r e q u a l i t y c a n h a p p e n tota l l y i n an o r g an i z at i on , p e o p l e have

to k n ow w h at they are d o i n g , a n d h av e to w a n t to wo r k t h e r e . T h e

f i r s t p a r t i s t r a i n i n g , t h e s e c o n d i s w i l l i n g n e s s a n d att i t u d e .

Peop l e have to h a v e t r a i n i n g i n q u a l i t y p r ac t i c e s i n o r d e r to make

i t wo r k . I n ad d i t i on to k n ow i n g h ow to do t he i r j o b we l l , th i s

i n c l u d e s :

1 . Q u a l i t y Too l s
2 . Qua l i t y P r i n c i p l es a n d Awa r e n e s s

Man y q u a l i t y t r a i n i n g p r o g r ams s p e n d a n u n b a l a n c e d amou n t of t i me

h e av i l y o n t h e too l s (Pa r i eto C h a r t s , F i s h b o n e D i a g r ams , etc .)

rat h e r t h a n t h e p r i n c i p l es (Be l i ef S y s tems) .

Good q u a l i ty t r a i n i n g p ro g r ams a l so n e e d to c o n s i d e r :

1 . C o n t e n t
2 . De l i ve r y

M a n y a r e h e a v y i n t h e c o n t e n t , b u t b e c a u s e t h e de l i ve r y s t y l e does

not a c h i e ve bu y - i n and be l i e f , i t b e comes someth i n g t h at i s l ea r n e d

rath e r t h a n some t h i n g t h at i s p r ac t i ce d . T h i s he 1 p s a l on g t h e

say i n g , " th i s t o o w i 1 1 p a s s .

H ow do we e m p h a s i z e t h e p ro p e r c o n te n t o n p r i n c i p l e s as we l l as

too l s , w h i l e p ay i n g atte n t i on to me t h o d o f de l i v e r y to g e t i t to

s t i c k ?

I n c o n te n t , p l ace h e a v y e m p h as i s o n C o s t o f Q u a l i t y c o n c e p t s , as

Po r t l an d Q u a l i t y C o n f e re n ce
Mak i ng Qua l i ty Come A l i ve

6 5 -

we l l as P r ocess v s . P r o d u c t c o n c e p t s . T he s e a r e t h e t h i n g s w h i c h

make the d i f f e r e n c e i n be l i e v a b i l i t y . Cost of Q u a l i t y

d i f f e r e n t i ates h u g e sav i n g s b y do i n g i t r i g h t t h e f i r s t t i me ,

comp a r e d to h u g e costs of l e tt i n g a f a i l i n g p r o d u c t o r s e r v i ce g o

o u t i n t h e m a r k e t p l ace . P rocess v s . p ro d u c t d e s c r i bes h ow i f y o u

pay atte n t i on t o t h e p ro c e s s b y w h i c h y o u b u i l d a p ro d u c t o r

se r v i ce , t h e p r o d u c t w i l l t a k e c a r e o f i tse l f .

I n de l i ve r y , c o n n e c t a pe r s o n ' s wo r k e x p e r i e n c e to th e i r own

pe r s o n a l e x am p l es of g r i ef and j o y w i t h a p ro d u c t o r s e r v i ce -

afte r a l l , m a n y a s p e c t s of t h e i r wo r k l i f e a r e j u s t l i k e t h a t . I n

ad d i t i o n , b y p u tt i n g q u a l i t y i n e v e r y d a y te rms a n d e x am p l e s -

some t i mes c a l l e d " me t ap h o r s " , y o u w i l l r e l ate to an i n d i v i d u a l ' s

be 1 i e f s y s tems m u c h bette r . I t i s t h e s e be 1 i e f s y s tems w h i c h

d e sc r i be a pe r s o n ' s pe r c e p t i on of c a p a b i l i t y , a n d t h e n h ow t h e y

b e h av e .

I I I . P r act i c i ng R e s u l ts t h at S t i c k

We l l , n ow t h at we h ave de l i ve red t h e be l i e f s y stem a l o n g w i th t h e

behav i o r a l r u l e s , we have q u a l i t y t h at s t i c k s , r i g h t ?

Not a l ways !

L i ke a c a r wh i c h r u n s on gas , we c a n o n l y g o so f a r o n a tan k f u l -

bef o re we m u s t s e e k o u t s i de s u p p o r t , r e i n f o r c e me n t , ass i s t a n c e (g as

s tat i o n) . As Leade r s , we m u s t f i r s t be c on g r u e n t - " wa l k t h e t a l k "

Po r t l a n d Q u a l i t y C o n f e r e n c e
Mak i n g Qua l i ty Come A l i ve

6 6 -

- a n d p r ac t i ce w h a t we p re ac h . S e c o n d , we m u s t u n d e r st a n d t h e 3

th i n g s peop l e a re l oo k i n g f o r i n t h e i r j o bs . T h i r d , we m u s t

p r act i ce empowe r m e n t of p eo p l e i n th e i r j o b s , a n d c o u p l e t h i s w i t h

r e a l t r u s t .

F i r s t , we m u s t w a l k t h e t a l k . I f we a r e u n ab l e to p r act i c e i t , we

must n o t p re a c h i t . A l t h o u g h most th i n k t h e y are c on g r u e n t , t h e r e

m a y be man y acc i d e n t a l , s u bt l e w a y s i n w h i c h th i s i s n o t h a p p e n i n g .

F o r e x amp l e , man y a c c i d e n t a l l y r ew a r d f a i l u r e , b y p a y i n g m o r e

atten t i on t o those t h at " save t h e d a y " r a th e r t h a n p re v e n t i on .

W h at a b o u t those w h o made t h e d a y " u n n e c e s s a r y to save " - do t h e y

g e t e q u a l o r g reate r c re d i t ?

S e c o n d , F red S m i t h , C EO of F e d e r a l E x p r e s s , s umma r i z e d 3 t h i n g s h e

fe l t a l l emp l o y e e s s h o u l d h a v e c l ea r a n s w e r s to :

1 . What ' s i n i t f o r me ?
2 . W h at ' s e x pe c t e d of me ?
3 . W h e r e d o I g o w i th a q u e s t i on ?

B y i n s u r i n g t h at a l l i n d i v i d u a l s we r e e as i l y ab l e t o a n swe r t h e s e

q u e s t i o n s , he acc u r ate l y fe l t t h at i mp e d i m e n t s to q u a l i t y wo r k w e r e

r e move d . I f y o u f e e l t h at q u a l i t y i s a n at u r a l t e n d e n c y , u n l es s

the r e a r e mot i v at i o n s a g a i n s t i t , y o u f i n d t h e s e ba r r i e r s to

q u a l i ty wo r k a n d e l i m i n ate t h em .

T h i r d , m u c h has b e e n s a i d abo u t empowe rme n t i n t h e w o r k p l ace . A

r e c e n t I n d u s t r y W e e k (M ay 4 , 1 9 9 1) a r t i c 1 e d i s c u s s e d t h e common

f a l l ac y of empowe rme n t - n o t i n i ts c o n c e p t , but the way i t was

Po r t l a n d Q u a l i t y C o n f e r e n c e
Mak i ng Qua 7 i ty Come A 7 i ve

6 7 -

----------------- -----

g e n e r a l l y p r ac t i c ed . S i mp l y de l e g at i n g r e s p o n s i b i l i t y downwa r d ,

w i t h o u t the r e so u r c e s and auth o r i t y , b e come me r e l y a w a y of

s h i f t i n g b l ame . Y o u c a n te 1 1 t h a t empowe r me n t i s wo r k i n g , w h e n

a n y o n e d e a l i n g w i t h a c u s tome r i s a b 1 e to m a k e t h e p r o d u c t o r

se r v i c e r i g h t w i t h o u t c o n tact i n g th e i r s u pe r v i so r .

I V . Meas u r i ng R e s u l ts _w i t h A u t ho r i ty

Gett i n g mo r e and mo r e " po c k e t s " a n d f i n a l l y t h e e n t i r e

o r g a n i z at i on - to p r act i ce q u a l i t y r e q u i r e s meas u r eme n t . T h o s e w h o

a r e a l r e a d y p r ac t i c i n g i t can be c o n v i n c e r s to t h o s e w h o a r e not ,

and o n l y th r o u g h meas u re me n t . T h e r e a r e two i s s u e s : r i g h t message

- w r o n g pe rson , and measu r i n g c o n t r i b u t o r s .

I f y o u " j u s t t a l k " abo u t y o u r s u c c e s s e s , y o u a re n o t l i ke l y to be

con v i n c i n g . P e r h ap s wo r s e , i f y o u s pe a k t h e w ro n g l an g u a g e , y o u

won ' t b e h e a r d a t a l l . T h i s m e a n s s pe a k i n g tec h n i ca l l an g u ag e t o

a h i g h e r e x e c u t i v e w i l l b e l ess mean i n g f u l t h an c o n v e r t i n g t h o s e

l a bo r s av i n g s i n to d o l l a r s , wh i c h i s t h e e x e c u t i v e ' s l an g u ag e .

B y i n te r n a l l y meas u r i n g c o n t r i b u t o r s to q u a l i t y , r a t h e r t h a n

r e s u l ts a l o n e , i t i s l e ss l i ke l y t h at t h e r e s u l ts w i l l b e

sabotaged . T h e r e a r e man y ways o f a r t i f i c i a l l y ac h i ev i n g a d es i r e d

r e s u 1 t i n a p ro d u c t t h r o u g h f a l se meas u r e s , b u t few w a y s of

tw i s t i n g con t r i b u t i n g p ro c e s s meas u r e s f o r th ose p ro d u c t s . W h e n

the r e a r e acc i d e n t a l rewa r d s f o r p o o r q u a l i t y , th i s b e come s e v e n

mo r e n o t i c e ab l e .

Po r t l a n d Q u a l i t y C o n f e re n c e
Mak ing Qua 7 i ty Come A 7 i ve

6 8 -

F o r e x amp l e , i t i s we l l k n ow n that a n e x ce l l e n t k e y e n t r y o p e r a to r

de l i v e r s mo r e k e y s t r o k e s pe r h o u r t h a n t h e r e s t o f t he i r

c o n s t i t u e n c y . B u t w h at h a p p e n s w h e n y o u s ta r t to measu r e th i s

r e s u l t ? K e y e n t r y o p e r a to r s h ave a c t u a l l y d i s c a r d e d o r de l ayed

mo re l u c r at i ve bat c h e s of wo r k i n o r d e r to i n c rease th e i r k e y st r o k e

cou n t . B y meas u r i n g con t r i b u to r s , s u c h as e r r o r r ate , e n t r y

t e c h n i q u e s , a n d s o f o r th , y o u w i l l g e t t h e r e s u l ts y o u a re l oo k i n g

f o r , w i t h n o s u b te r f u g e .

V . Se l l i n g B e n e f i ts I n te r n a l l y

P r ac t i c i n g , a n d meas u r i n g , a re e x c e l l e n t s e l l i n g te c h n i q u e s to

s p read q u a l i t y p o c k e t s t h ro u g h o u t the o r g a n i z at i o n . A c t i ve

ow n e r s h i p , cou p l e d w i t h " wa l k i n g i n t h e o t h e r ' s s h oes " a re

d r amat i c a l l y e f f e c t i ve at g e tt i n g b u y - i n a n d h av i n g ot h e r s se l l

themse l v e s , w h i c h i s a l w a y s mo r e e f f e c t i ve t h a n y o u se l l i n g t h em .

T h o s e w h o have r a i s e d tee n a g e r s k now h ow h a r d i t i s to be

c o n v i n c i n g - y e t t h o s e same y o u n g peop l e w h o g o o u t on t he i r own

a r e " am a z e d at w h at y o u h a v e l e a r n e d w h i l e t h e y we r e g o n e . W h at

c a u s e s th i s ? Owne r s h i p ! O n c e y o u e x p e r i e n ce d i r e c t l y t h e top i c

be i n g d i s c u s s e d , i t has mu c h g r eate r mean i n g . P e r h a p s t e e n a g e r s

a r e j u s t l i ke u s i n t h i s a rea . I n fact , a re t h e y a b i t mo r e h o n e s t

o r d i r e c t a b o u t i t ?

F o r th i s reason , comm i tme n t c a n be s h a l l ow com p a red to i n vo l v e me n t .

Comm i tme n t may c h an g e w i t h s h i ft i n g p re s s u r e s , b u t a p e r s o n w h o has

Po r t l a n d Q u a l i t y C o n f e r e n c e
Ma k i ng Qua 7 i ty Come A 7 i ve

6 9 -

been i n vo l ved i s l e s s l i ke l y to s h i f t . T h e p e r s o n a l e x pe r i e n ce a n d

i n v e s tment - i n deed , t h e " emot i on a l s u n k c o s t " - c a r r i e s t reme n d o u s

we i g h t .

F i n a l l y , F r ed S m i th ' s " Wh at ' s I n I t F o r Me " p r i n c i p l e s h ow s u s t h e

i mpo r t a n c e of l oo k i n g at o u r p ro b l ems a n d so l u t i on s f r om t h e

othe r ' s p o i n t of v i ew . W h i l e t h i s seems o bv i ou s , e v e n t r i te ,

c o n s i d e r th i s : W h e n y o u ap p roach someo n e , a r e y o u t h i n k i n g of w h at

y o u a re g o i n g to s a y , o r the way i n w h i c h y o u w i l l be r e c e i v e d ?

T h i n k a b o u t i t !

Po r t l and Q u a l i t y C o n fe r e n c e
Mak i n g Qua l i ty Come A l i ve

7 0 -

Making Qual ity Come Al ive:

Getting it to Stick

- 7 1 -

--0 __ 0 _� _ ___ _ - - --- - -- - - - -- - --

Practicing Results

Measuring Results

Selling Benefits

Bottom up Involvement

- �--�- -

- 7 2 -

luawaAloAU I
UMOa dOl

Born, not Made? Made, not Born?

The Role of the Advocate

7 3 -

Walking the
Talk

Content
Cost of Failure
Process

Delivery:
Real examples

Empowerment!

Contributors ~ Results

7 4 -

Empowerment:
• T otal

• R esponsibility

• U nderstanding

• S tandards

• T echnology

Ownership:

Have you ever
tried to teach
your teenager
anything -

about anything?

SQA STANDARDS AND TOTAL QUALITY MANAGEMENT

Caroline E. Wardle, National Science Foundation *
Dolores R. Wallace, National Institute of Standards and Technology

Reza Khorramshahgol, American University
Eugene G. McGuire, American University

Bonnie Kaplan, American University

ABSTRACT

Total Quality Management (TQM) programs, which focus on continuous process
improvement, are becoming increasingly popular in corporations today and may,
in fact, be superceding quality assurance activities. Quality assurance has been
used by corporations to ensure the quality of released products. What we are
fmditig now is that the thrust of management attention is on process improvement
rather than on quality assurance.

This paper examines some major standards and programs in SQA and TQM.
Because few companies are using SQA standards, the difficulties in implementing
SQA standards are addressed. Results from an on-going research project
studying SQA standards and the interrelationships between TQM and SQA are
presented.

* Dr. Caroline Wardle
National Science Foundation,
CISE/CDA
1 800 G Street, NW, Room 436
Washington, DC 20550
Email: cwardle@note.nsf.gov

7 5 -

BIOGRAPHIES

Caroline E. Wardle is the Program Director, Educational Infrastructure, for
the Computer and Information Science and Engineering Directorate at the
National Science Foundation. Previously she was an Associate Professor of
Computer Science at Boston University where she established and chaired the
department of Computer Science at Metropolitan College. She was also the Dean
of the Wang Institute where she established the School of Information
Technology and implemented its first degree program, a Masters degree in
Software Engineering. Her research interests have ranged over broad areas in
software engineering, computer science and information systems. Her current
research work includes software quality assurance, and total quality management
in software development.

Dolores R. Wallace is Project Leader for Software Quality and Safety,
National Institute of Standards and Technology, and leads an effort in the
Assurance of High Integrity Software. She has developed standards and
guidelines for Software V & V, and supports federal agencies with software
product assurance. Previously Ms. Wallace worked for the US Navy in computer
applications, especially graphics. She has chaired the COMPASS '90 Conference
and served as Co-Guest Editor of a special issue of IEEE Software on Software
V&V.

Reza Khorramshahgol is an Assistant Professor of Computer Science and
Information Systems at American University. Previously he was an Assistant
Professor at North Carolina's Central University, and before that a Member of
the Technical Staff at AT&T Laboratories. He serves on the editorial board of
the IEEE Transactions on Engineering Management. His current research
interests include software quality management, telecommunications, and decision
support systems.

Eugene G. McGuire is an Assistant Professor of Computer Science and
Information Systems at American University. Previously he worked in all phases
of systems development at Tandem Computers and before that at NetExpress
Communications. His current research interests include organizational aspects of
systems development and implementation, group dynamics in information systems
environments, and technology transfer issues.

Bonnie Kaplan is an Assistant Professor of Computer Science and Information
Systems at American University. Previously she was an Assistant Professor of
Information Systems at the University of Cincinnati. Her research specialties
concern social aspects of computing, impact of computing technologies, and
acceptance and diffusion of medical computer applications.

7 6 -

SQA STANDARDS AND TOTAL QUALITY MANAGEMENT

Caroline E. Wardle, National Science Foundation *
Dolores R. Wallace, National Institute of Standards and Technology

Reza Khorramshahgol, American University
Eugene G. McGuire, American University

Bonnie Kaplan, American University

INTRODUCTION

Quality Assurance has traditionally been used by corporations to ensure the
quality of released products. When we examine the software development
environment of private companies and Federal agencies, we fmd that few of these
organizations are using Software Quality Assurance (SQA) standards, although
many have expressed a desire to do so. Even those companies that are using SQA
standards are not entirely happy or satisfied.

Another vehicle for improving product quality, Total Quality Management
(TQM), is becoming increasingly popular in corporations today. TQM focuses
on continuous process improvement and is receiving significant acceptance at the
senior management level. What we are finding is that the thrust of management
attention is on process improvement rather than on quality assurance.

A research project was initiated in 1990 to examine the use of SQA standards, the
adaptation of TQM to software development, and the interrelationships between
TQM and SQA. The initial part of the study included data gathered from
interviews of SQA personnel and TQM personnel in both industry and Federal
agencies. Preliminary findings from this study and findings based on our
experience in aiding others responsible for SQA in their organizations,
demonstrate some of the problem areas in SQA standards implementation as well
as the effect that TQM may have on SQA activities.

In the following sections, we will first present an overview of three major SQA
standards and a discussion of the difficulties of implementing these standards.
Then we will present an overview of three major TQM programs and address the
issues raised in the research study about the relationships between SQA and TQM.

* Dr. Wardle is a Guest Researcher at the National Institute of Technology and Standards

7 7 -

1. OVERVIEW OF SQA STANDARDS

The standards related to software quality assurance that will be discussed in this
paper have significant differences that managers should understand before
implementing them in their organizations. Some of these differences concern the
sponsoring organizations and intended audience, the procedures by which the
standards were developed, the purpose of the standards, the scope (software
development and/or quality assurance), ability to tailor the standards, and
customer/developer responsibilities. Figure 1 presents the standards referred to
in this paper.

1.1 Sponsoring Organizations, Intended Audience and Standards'
Development Procedures

The standards used in this study were developed by different organizations. The
J oint Logistics Commanders (JLC) of the United States Army, Navy, and Air
Force commands of the Department of Defense (DOD) developed standards
which have been adopted by the DOD. The other standards were sponsored by
the Institute for Electrical and Electronics Engineers (IEEE), and the
International Organization for Standards (ISO).

1 . 1 . 1 DOD 2167A, 2168

The JLC undertook the task of developing standards for software development
and quality. The US defense industry participated in this activity through the
Council of Defense Space and Industries Association (CODSIA) and the National
Securities Industry Association (NSIA). The standards were issued as DOD
standards and are required on DOD contracts for mission critical computer
resources.

1 . 1 .2 IEEE 730

The IEEE is a professional organization which is a standards developing
organization accredited by the American National Standards Institute (ANSI).
The standards activities for software engineering are sponsored by the IEEE
Computer Society Software Engineering Subcommittee. Participation in IEEE
standards working groups is open to industry, government, and academia. IEEE
standards are often submitted for review and approval as ANSI standards. The
standards are used on a voluntary basis.

1 . 1 .3 ISO 9000

The ISO is a formal organization for standards where membership is by country.

1 8 -

DOD-STD-2167 A: Military Standard, Defense System Software Development Std,
February 29, 1988 US Department of Defense.

DOD-STD-2168: Military Standard Defense System Software Quality Program Std,
April 29, 1988, US Department of Defense.

IEEE Std.730.1: Standards for Software Quality Assurance Plans (SQAP), 1989.

ISO 9000 Series: "Quality management and quality assurance standards guidelines
for selection and use," 1987.

ISO 9001: "Quality systems - Model for quality assurance in design! development,
production, installation, and servicing," 1987.

ISO 9000-3: "Quality Systems - Guidelines for the application of ISO 9001
to the development, supply, and maintenance of software," 1990.

ISO 9004: "Quality management and quality system elements -- guidelines, 1987.

Figure 1 Standards Related to SQA * [1]

Within the ISO, a national body or other liaison organization may propose one of
its standards for adoption. A subcommittee within the ISO may also form a
working group to develop a standard or modify one that has been proposed. The
working group usually has members from several countries and must follow
formal procedures once a document reaches draft stage. To become an ISO
standard, a document must pass several levels of balloting, with one vote per
country. This is different from the IEEE procedures in which individuals vote
on the ballot version of a proposed standard. In both cases, negative ballots must
be resolved. The ISO itself does not require use of its standards. Instead these
standards are often mandated in various formal trade agreements, in industry
agreements or by a regulatory agency.

Several European nations are planning to unify as an "internal market" by the end
of 1992 [2] . This European Community (EC 92) is establishing systems for
product certification and quality systems registration. Companies wishing to sell
EC-regulated products will have to meet requirements of the EC standards. It is
expected that ISO 9000 will be adopted for use in the EC 92.

* In this paper we will use the abbreviations: DOD 2167A, 2 168 for DOD-STD-21 67A, 2168;
IEEE 730 for IEEE Std. 730. 1 ; ISO 9000 for ISO 9000 Series.

7 9 -

1.2 Purpose of Each Standard

1 .2.1 DOD 2167 A, 2168

------ -

These two standards are intended to provide the DOD with the capability to
develop and assess quality software. Specifically, DOD 2167 A establishes
unifonn requirements for software development that are applicable throughout
the system life cycle. The requirements provide a basis for government visibility
into a contractor's development, testing and evaluation efforts. The DOD 2168
standard establishes requirements for a software quality program to be applied
during acquisition, development, and support of software systems. The standards
are intended to be used together to ensure that the contractor develops software
according to a unifonn set of requirements for both software development and
software quality.

1 .2.2 IEEE 730

The purpose of the IEEE's SQAP standard is to provide unifonn, minimum
requirements for the preparation and content of Software Quality Assurance
Plans. It applies to the development and maintenance of critical software.

1 .2.3 ISO 9000

The ISO 9000 standard establishes the framework for requirements for quality
products of all types, not just software. Its purpose is to clarify distinctions and
interrelationships among the principal quality concepts and to provide guidelines
for the selection and use of ISO standards on quality systems. Other standards in
the 9000 series are for internal quality management purposes or for external
quality assurance purposes. The ISO 9000-3 standard provides requirements for
the application of ISO 9000 to software.

1.3 Scope: Software Development and/or Quality Assurance

1 .3 . 1 DOD 2167 A, 2168

The DOD standards provide requirements for both development and quality
assurance. The DOD 2167 A standard provides detailed requirements for the
contractor's documentation, the 17 documents that must be produced, their
fonnat, and the topics that must be included. The standard does not require a
specific set of software engineering methods, but does require that selected
methods are systematic and well documented.

8 0 -

The general requirements of DOD 2167 A provide for software development
management, software engineering, formal qualification testing, software product
evaluation, software configuration management, and the transition to software
support. The standard specifies the products to be evaluated and specifies
evaluation criteria for each product. For example, during software requirements
analysis, the software requirements specifications and interface requirements
specifications are evaluated for internal consistency, consistency with other
documents, traceability, appropriate software engineering techniques, appropriate
allocation of sizing and timing resources, and adequate test coverage of
requirements .

Within DOD 2168, the contractor establishes the software quality program but
the contracting agency reviews and approves the program. General requirements
address software quality program documentation, planning, implementation,
evaluations, evaluation records, corrective action, and management review. The
contractor must make available for review, documented evidence that the
software, documentation, and activities have met contractual requirements.

While the DOD standards do not specify how to do development and quality
assurance, nonetheless, the standards have considerable detail concerning the
processes and documentation of development and for the activities of SQA.

1 .3.2 IEEE 730

In contrast to the DOD standards requirements which address both development
and quality assurance, the IEEE SQAP standard addresses only quality assurance
requirements and indirectly includes development requirements.

The IEEE SQAP standard requires that a SQAP contain sections for the
following topics : documentation; standards, practices and conventions; software
configuration management; reviews and audits; testing; tools and techniques; code
control; media control; supplier (subcontractor) control; records collection;
training; and risk management. Any organization or groups within an
organization can use this standard. The standard can be used for any, or portions
of any, life cycle.

The SQAP must identify the documentation for the development, verification and
validation, use, and maintenance of the software, and must identify how the
documentation will be checked for adequacy. The standard specifies minimum
requirements for the software requirements specifications, software design
description, software verification and validation plan (SVVP), software
verification and validation report, user documentation, and the software
configuration management plan. Unlike the DOD standards, the SQAP standard

8 1 -

may not always be used in an environment where its implementation mandates the
development requirements.

The SQAP must state what reviews and audits must be conducted and how they
are to be accomplished. Testing may be performed under many arrangements, so
the SQAP standard requires a section of the SQAP to identify tests not included in
the SVVP.

1 .3.3 ISO 9000

The ISO 9000 requirements are general. In ISO 9001 and 9000-3 , the details of
the standard provide requirements for the supplier regarding the framework of
the quality system (management, documentation of the quality system, audits,
corrective action), the quality system life cycle activities and the quality system
supporting activities.

The life cycle activities require a development plan to specify the development
phases, required inputs and outputs, and verification procedures, but does not
specify documents or procedures. Requirements for design, implementation,
review and testing are general. Configuration management, document control,
quality records, measurements, and training are some of the supporting activities .
For both acceptance and maintenance, requirements are more extensive than those
in the DOD and IEEE standards.

The ISO 9004 considers the total quality management system, addressing topics
such as economics, marketing, and production in addition to the usual topics like
management, engineering, and assurance. It requires a company to examine itself
and its ability to plan its product line as related to its quality system and
economICS.

1.4 Ability to Tailor Standards

Both the DOD and IEEE standards apply to the development and maintenance of
critical or high-integrity software. High-integrity software controls services that
affect life, property, the national defense, and services that are critical for
companies to function in highly competitive business environments. ISO 9000
does not specify high-integrity. The DOD standards provide the maximum
requirements and the IEEE SQAP standard provides the minimum requirements.
Tailoring is permitted in both cases, but with different meanings.

8 2 -

,----------------------� - - ---�--------

1 .4. 1 DOD 2167A, 2168

For the DOD standards, "tailoring" means the deletion of requirements that may
not be applicable. However the tailoring does not allow for merging documents
or adding documents that may be more appropriate.

1 .4.2 IEEE 730

For the IEEE standard, for non-critical software, a subset of requirements may
be applied. This standard also allows additional content for an SQA plan. Thus
in the IEEE standard, "tailoring" means either addition or deletion of
requirements .

1 .4.3 ISO 9000

No tailoring is mentioned in ISO 9000.

1.5 C ustomer/Developer Responsibilities

1 .5 . 1 DOD 2167A, 2168

The DOD standards are intended for use in contractual situations addressing only
the developer responsibilities, not the customer responsibilities. DOD (the
customer) may be involved in reviews or receive results of the SQA activities.

1 .5 .2 IEEE 730

The IEEE standard does not mention any specific organization, so the standard
could be used internally or could be specified in a contract.

1 .5.3 ISO 9000

ISO 9000 is intended to be used in contractual situations and addresses both
developer and customer responsibilities. It provides quality system requirements
for the developer, including appointment of a management representative
responsible for ensuring proper implementation of this standard. ISO 9000-3 is
intended to facilitate the application of ISO 9001 to software. An important
addition to ISO 9000-3 is a section of requirements for the customer that
addresses the customer's requirements and arrangements with the developer. An
entire section of ISO 9000-3 identifies customer responsibilities.

In all three standards, requirements on contractors are passed on to their
subcontractors.

8 3 -

2. DIFFICULTIES OF IMPLEMENTING SQA STANDARDS

Our preliminary interviews have been primarily with people required to use
DOD 2167 A and those attempting to use IEEE 730. Problems cited by the
interviewees included technical requirements for documentation, and inadequacies
of current organizational processes and technology to support the requirements of
the standards. The authors' personal experience also suggests that senior
management commitment is an issue.

2.1 Documentation Issues

Both DOD 2167A and IEEE 730 specify documentation requirements. A
frequent complaint about applying SQA standards was the amount of required
documentation. Other complaints took issue with inconsistencies between the
documentation requirements and the real world. These users felt that
documentation would only add significant value to a product when technology
allows the documentation to be produced more quickly and to be maintained
consistent with the software.

Because DOD 2167 A's allowance for tailoring means eliminating documents or
eliminating requirements from them, developers chose to tailor out what they
found inappropriate for their contracts and then Uustifiably under the tailoring
definition) claim confonnance with the standard.

2.2 Current Processes and Technology

A set of issues brought up in the interviews dealt with modem technology.
Today developers are using various CASE tools that provide fonns of
documentation but not necessarily in the fonnat-specific requirements of the
DOD standards. One developer suggested that the output of CASE tools, rather
than the currently required documents, should be acceptable.

2.3 Senior Management Commitment

In the authors' experience, the process of SQA has been initiated at the project
level. While tolerable for small projects, the approach seems to collapse as
projects increase in size and complexity. The necessity to interact with other
project staff for coordinating, perfonning, and using results of SQA requires a
higher level of managerial sponsorship. This sponsorship is necessary to approve
and support changes in project schedules and personnel assignments to
accommodate the increase in interactions and tasks. The commitment to SQA
activities from upper management depends on an understanding that the

8 4 -

additional time and effort early in a project will reduce the need for rework at
later stages of the project.

It is interesting to note that this issue was not addressed by the SQA personnel.
However it was addressed by the TQM personnel.

3 TOTAL QUALITY MANAGEMENT

The concept of Total Quality Management (TQM) is now well known to many
people throughout government and industry. Widely attributed to the pioneering
work of Dr. W. Edward Deming and Joseph M. Juran in post-World War II
Japan, this concept of "quality first" involves fundamental and large-scale changes
in an organization's management and culture. [3]

TQM is a structured organizational effort to implement continuous process
improvement in activities throughout that organization. This effort involves: top
management commitment, total ongoing participation of management and staff in
every aspect of that organization's business, and continuous measurement and
improvement of every process throughout that organization.

Deming describes this process by emphasizing 14 points for management to
follow in implementing a total quality program in their organizations, see Figure
2. These principles and similar principles advocated by other quality experts are
being adopted by many organizations today as they strive to remain competitive
in government and private sectors alike.

3.1 Total Quality Management Programs

The TQM philosophy has been formalized in several programs that are focused at
different audiences but share common elements. Three major TQM programs
will be described: the DOD TQM program, the Malcolm Baldrige National
Quality Award (MBNQA), and the ISO 9000.

3 . 1 . 1 DOD Total Quality Management

The TQM program developed by the DOD * is designed to change the quality
culture of the defense establishment, including its contractors and their principal
subcontractors. In this program, TQM is concerned with every managerial,

* OOD5000.5 1 -G, Total Quality Management: A Guide for Implementation, February 1989.

8 5 -

1 . Create constancy of purpose towards improvement of product and service.

2. Adopt the new philosophy. We can no longer live with commonly accepted
levels of delays, mistakes, and defective workmanship.

3. Cease dependence on mass inspection. Require, instead, statistical evidence that
quality is built in.

4. End the practice of awarding business on the basis of price tag alone.

5. Find problems. It is management's job to work continually on the system.

6. Institute modem methods of training on the job.

7. Institute modem methods of supervision of production workers. The
responsibility of supervisors must be changed from numbers to quality.

8. Drive out fear, so that everyone may work effectively for the company.

9. Break down barriers between departments.

10. Eliminate numerical goals, posters, and slogans for the workforce asking for
new levels of productivity without providing methods.

1 1 . Eliminate work standards at prescribed numerical quotas.

12. Remove barriers that stand between workers and their right of pride to
workmanship.

13. Institute a vigorous program of education and training.

14. Create a structure in top management that will push every day on the above 13
points.

Figure 2 Deming's 14 Points [3]

design, development, manufacturing, quality, and administrative process that can
affect the final outcome of a product. Every functional element in DOD and the
defense industry must become aware of their process shortcomings and devise
ways to improve these shortcomings.

In regard to product quality, TQM expands the definition from the conventional
approach of eliminating defects. Quality first begins with a defmition of the
correct requirements. When these requirements have been met, primarily

8 6 -

through continuous process improvement, then total customer satisfaction can be
achieved. [4]

3 . 1 .2 Malcolm Baldrige National Quality Award

This program was originated by a 1987 Act of Congress and is administered by
the National Institute of Standards and Technology, Department of Commerce.
[5] This quality program shares many of the attributes of DOD's TQM program
but is directed towards the private sector of American business instead of the
defense sector. This highly publicized program annually grants the National
Quality Award to companies in three categories : manufacturing companies,
service companies, and small businesses. Up to two awards may be given in each
category each year *. Elements on which the applicants for the MBNQA are
evaluated are leadership, information and analysis, strategic quality planning,
human resource utilization, quality assurance of products and services, quality
results, and customer satisfaction.

The MBNQA, like the DOD TQM program, is characterized by a "continuous
improvement" approach. This approach encompasses all operations and processes
and includes reducing errors and defects, enhancing value to the customer,
improving responsiveness and cycle time performance, and improving efficiency
and effectiveness. The continuous improvement approach also emphasizes
regular cycles of planning, execution, and evaluation, and using sound
quantitative bases for decision making.

Although they address different audiences, both the DOD TQM program and the
MBNQA program share some common characteristics. They are focused on
customer satisfaction, continuous process improvement, and, most importantly on
top management's responsibility to set the quality direction and goals for the
company and then follow through with action.

3 . 1 .3 ISO 9000

ISO 9000 addresses quality management systems for hardware, software, process
materials and services. Hence, it addresses a limited number of activities, and
differs from a system whose purpose is to achieve total quality management. For
a TQM system, every activity in the organization must be included. [6] ISO

* Past winners of the MBNQA are: 1990 - Cadillac, Federal Express, mM Rochester, Wallace
Co., Inc; 1989 - Milliken & Co, Xerox; 1988 - Westinghouse, Motorola, Globe Metallurgical.

8 7 -

9000 emphasizes preparing a quality plan and a quality manual appropriate for
the level of quality system required.

3.2 Some Applications of TQM to Software Development

TQM principles, which have been advocated by numerous quality experts, have
generally been applied to manufacturing-oriented aspects of organizational
environments. Although the machine-intensive, repetitious production lines of
manufacturing environments differ greatly from the people-intensive, intellectual
life cycle of the software development process, the quality principles of TQM are
transferable.

It has been proposed that the general attributes of TQM philosophy are equally
applicable and necessary to the systems development process as they are to any
other process in an organization. [7] These attributes applied to the systems
development process are:

1 . Manage systems development as engineering.

2. Manage processing operations as production under statistical control.

3 . Concentrate on the motivation and qualifications of every professional,
technical, administrative, and managerial employee.

4. Manage the information management unit as a product and service
business. Make certain that you not only provide superior products, but
also make no less certain that you provide superior service response to
your customers.

5 . Institute systems for powerful comprehensive management of quality as
well as systems for powerful comprehensive management of information.

6. Make quality improvement a central strategy of the information
management business. [7]

TQM in the systems development process relies upon many of the same principles
that drive TQM in the rest of the organization. Management commitment and

responsibility, employee participation, and statistical analysis are all critical
components of a TQM plan. Some of the TQM tools which have been suggested

as helpful in enhancing software systems quality are process flowcharts,

brainstorming, risk management, cause and effect analysis, defects analysis, and

8 8 -

design reviews. Many of these are traditionally used in software verification and

validation, a discipline used in performing SQA. [8]

4 PRELIMINARY RESEARCH RESULTS

4.1 Methods - Interviews *

Interviews were conducted with seven individuals at six Federal agencies and
companies; all the companies performed contractual work for the government.
The interviewees' responsibilities included software development, program
management and government consulting. All interviewees were assured of
confidentialty.

The interviews were based on an interview guide prepared by two of the team
members. The two team members worked together on a preliminary analysis of
the interviews in order to identify potentially important issues and hypotheses.
Next, one of these two team members coded each interview according to
categories that emerged both during the preliminary analysis and during the
coding processes. Based on the coding, this team member performed a second
analysis.

The discussion below is based on an analysis of this first set of interviews. The
interviews served two purposes:

• to pilot test the interview questions
• to identify important issues for further investigation

4.2 Maj or Issues

Three major issues arose from the preliminary set of interviews:

1 . Flexibility and tailoring of SQA standards
2. Customer versus developer in the use of SQA standards
3. Relationship between SQA and TQM organizationally

4.2. 1 Flexibility and Tailoring of SQA Standards

The need for flexible standards was a dominant theme in these interviews.
Flexibility was tied to the idea of "tailoring", i.e. , the ability to use those parts of

* The interviews were conducted by one of the authors from American University

8 9 -

the standard that seem most appropriate to their contracts and to delete the
remaining parts . Most interviewees wanted to be able to tailor standards. fu
those organizations that had a choice, the DOD standard was not used in its
entirety. According to one interviewee, the DOD standard focussed on "petty and
irrelevant" detail, thereby emphasizing format over content. A program
manager's comment was:

"The DOD structure is rigid. fu DOD, they tell you more about margins,
what kind of print to use."

Several interviewees thought the DOD required documentation was a waste of
time for the developer and useless for the customer. As one manager of software
development commented:

"It kills us trying to produce documentation for DOD. It requires as much
labor to produce the documentation as to write the software."

According to the interviewees in organizations that must use DOD standards,
there has been considerable pressure to whittle away at the standard. Contractors
requested that they be allowed to tailor, and the overall effect has been one of
reducing the standard's requirements.

Alternatives to the DOD standards were spoken of in more favorable terms. One
organization liked a British standard BSI 5750 (authors: identical to ISO 9(00)
because it fitted well with its emphasis on customer satisfaction. Another
interviewee characterized the IEEE standard as a good one because it was simple,
lacked detail, and therefore was flexible. However, this interviewee thought that
customers did not like the IEEE standard for precisely those reasons. This
interviewee thus explicitly raised the issue of a potential conflict between what the
developer seeks in standards and what the customer seeks.

4.2.2 Customer versus developer in the use of SQA standards

There was some disagreement among interviewees over what the customer wants.
According to one interviewee, customers wanted detailed standards to be adhered
to, which is why DOD has the standards it has. A good relationship between the
developer and the customer would reduce the need for having everything
included in the standards so as to address all of a customer's concerns in software
development. However, particularly in government projects, where there may be
many bids by contractors, the customer has taken the lead in derming standards,
with the ensuing rigidity and detail of the DOD standards.

9 0 -

According to the developers who were interviewed, developers' and customers'
concerns differed because the developers did not want to be bound by rigid,
detailed standards. However developers see customers as wanting a very detailed
standard that addresses all concerns in software development. As one developer
put it:

"The intention (of standards) is to give the customer a warm feeling that
everything is in good shape."

However developers did express some concern that customers should be
knowledgeable so as not to end up attempting to manage a project using methods
with which they have little experience or imposing standards that are, at best,
unnecessary .

4.2.3 Relationship between SQA and TQM organizationally

In the companies participating in the initial study, there was little or no
relationship between SQA and TQM personnel. In those organizations in which a
TQM program was implemented, SQA was seen as supporting and fitting the
TQM program. SQA was seen as being part of the TQM philosophy of customer
satisfaction and process improvement. As an example, previous quality measures
such as the number of errors per lines of code were changed to ones more
relevant to customer satisfaction, such as the number of customer requests for
enhancements per year.

It is not surprising that there is little overlap between SQA standards activities
and TQM. SQA standards, at least DOD standards, are seen by those who must
comply with them as being focussed on documentation. In contrast TQM is
focussed on customer satisfaction and process improvement. TQ M personnel
made little mention of software standards. Instead they commented on those
aspects of SQA that fit better with the TQM philosophy.

4.3 Future Research Directions

The preliminary set of interviews was used to explore the area of SQA and TQM
and to determine potentially important issues. Our initial analysis suggests the
following topics for further study:

1 . Flexibility and tailoring of SQA standards : can standards be written
that are flexible yet rigorous?

9 1 -

2. Customer versus developer in the use of SQA standards: can the two
different viewpoints be reconciled so that SQA standards can be used
effectively to improve the quality of software?

3. Relationship between SQA and TQM organizationally: what are the
barriers to SQA and TQM having interrelationships organizationally?

4. Overlaps between SQA and TQM activities: what are these and can the
overlaps be used in some way to improve the organizational structure
supporting software quality management?

REFERENCES

1 . For DOD standards, order from:

Commander, Space and Naval Warfare Systems Command
ATTN: SPAWAR - 3212
Washington, DC 20363-5100

For ISO standards, order from:

American National Standards Institute (ANSI)
1430 Broadway
New York, New York 1001 8
(212) 642-4900

For IEEE standards, order from:

The IEEE Computer Society
Order Department
10662 Los Vaqueros Circle
Los Alamitos, CA 90720
1 -800-CS-BOOKS or (7 14) 821 -8380

2. Tiratto, Joseph, "Preparing for the EC 1992 in the US through Quality System
Registration," IEEE Computer, April, 1991 , pp. 70-72.

3. Walton, Mary, "The Deming Management Method", Putnam Publishing, NY,
1986.

4. Perry, William E. "Pursuing Quality Between TQM and NQA," Government
Computer News, November 26, 1990, p.50.

9 2 -

5. 1991 Application Guidelines for Malcolm Baldrige National Quality Award,
National Institute of Standards and Technology, Administration Building -- Room
A537, Gaithersburg, MD 20899.

6. Oakland, John S. , Total Quality Management, Butterworth Heinemann Ltd.,
Oxford, UK, 1 989.

7. Schwartz, Herb, "How to Make TQM Happen in Systems Development,"
Seminar at David D. Lattanze Center for Executive Studies in Infonnation
Systems, Loyola College, Baltimore, MD, April 30, 199 1 .

8 . Wallace, Dolores R. and Fujii, Roger U., "Software Verification and
Validation: An Overview", IEEE Software, May 1989, pp. 10-17.

9 3 -

I n The Eye of the Storm

Noelle Evans
Mentor Graphics Corporation

8005 S.W. Boeckman Road
Wilsonville, OR 97070-7777

Arpa Address: nevans@mentorg.com
(503) 685-7000

Noelle Evans is currently a quality engineer at Mentor Graphics Corporation. Prior to
joining the DSS project she was a technical writer involved in documenting the next
generation software developed at Mentor Graphics. She received her B.A. with honors in
history from Portland State University.

Mark Seyler
Mentor Graphics Corporation
8005 S.W. Boeckman Road

Wilsonville, OR 97070-7777
Arpa Address: markS@mentorg.com

(503) 685-7000

Mark Seyler is currently the project leader for the DSS product at Mentor Graphics
Corporation. Prior to bringing DSS to market he was involved in research activities aimed
at integrating expert systems technology into the EDA design process. The design of DSS
is an outgrowth of that research. He received his B.A. in Fine Arts and his M.S. in
Computer Science at the University of Illinois.

COPYRIGHT © MENTOR GRAPHICS CORPORATION 1991
ALL RIGHTS RESERVED

9 4 -

Mentor Graphics In the Eye of the Storm

Abstract
The eye of the storm is a space of relative calm. This paper describes the strategies and
tactics used by the Decision Support System (DSS) project team to remain in the eye and
bring our product to market. We discuss what we consider to be our best practices,
processes, and techniques. Software engineers, quality engineers and project leaders will
find this material of interest.

Acknowledgments
We would like to acknowledge the project team responsible for creating DSS. They are
John Thienes, Jose DeCastro, Justin Ting, and Sandeep Ajmani.

Thanks also to Bill Stevens for providing us with much needed marketing direction and
support at a critical juncture.

A special thanks to Gerry Langeler for believing in the project and for supporting and
encouraging us throughout its development.

9 5 -

Mentor Graphics In the Eye of the Storm

1 . Introduction
The Decision Support System (DSS) is a toolkit that allows users to create custom
electronic design monitoring and analysis applications. These applications may be as
small as a special purpose calculator or as large as monitoring panels that collect, analyze,
and present data.

DSS combines a familiar spreadsheet user interface with a powerful and sophisticated
compute engine, a set of interfaces to external data, and an easy to learn visual
building-block toolkit.

DSS was developed in conjunction with a larger company-wide effort to revamp our entire
software development environment. This effort began in early 1986 with the initiation of a
variety of R&D efforts. Mentor Graphics committed to building the development
environment using new technology: the C++ object oriented programming language. The
development environment consisted of a set of core utilities, a user interface with a
programming language, and a design data base. By 1989, the Falcon project, as the new
development environment had become known, was concentrating completely on producing
a marketable set of products.

Concurrent with the development of the Falcon Framework, we were building applications
such as DSS using the Falcon Framework. The DSS project team members were new to
one another and to the C++ object oriented technology. Developing a new application on
top of a changing software development environment using new technology by a newly
formed product team made for a challenging and dynamic environment. The additional
pressure to bring products to market as quickly as possible made us feel as if we were in
the midst of a great storm.

Although the Falcon project and the release was a major undertaking for Mentor Graphics
as a company, we do not believe the pressures and requirements surrounding the DSS
project were unique. All project teams face challenges and expectations that have the
potential of diverting resources which may ultimately jeopardize the quality of the end
product. We believe that amidst the "storm" that accompanies new software product
development there exists a space of relative calm; the eye of the storm. This paper
describes the strategies used by the DSS project team to remain in the eye and bring our
product to market.

9 6 -

Mentor Graphics In the Eye of the Storm

2. Project Strategy
2.1 Team Organization

Organizing the team to work efficiently and confidently was a critical element in the
success of DSS. Our organization was the result of trying to minimize the frequency and
maximize the quality of our communications while still disseminating the information
each team member required.

The initial engineering team that brought DSS to prototype was a single R&D engineer.
Rather than handing off the prototype to an implementation group, the initial designer
remained with the project. As the project moved from the R&D phase to the development
phase, the team, now three engineers, made a conscious decision to keep the overall size of
the project team small. Other team members were cycled in only as needed. We added a
marketing resource first, then a technical writer, and finally a quality assurance engineer.
We found timing to be critical. For example, our quality assurance engineer was added
late in the development phase, stretching our resources to put tests in place and increase
our test coverage to meet our corporate targets as we neared our alpha release date. These
difficulties would have been minimized if the QA engineer had joined the project earlier
and been able to spend more time creating the test suite.

During this early research and development period, the division was trying to improve
team organization. Traditionally, quality assurance engineers were physically located with
development engineers, but other team members were not. In 1988 and 1989, technical
writers moved in with the projects. In 1990, the marketing representatives and customer
support engineers also located with their projects. This physical proximity proved to be an
important contributor to overall efficiency of communications .

We organized the project team into empowered specialists. We clearly defined ownership
and responsibilities and distributed the decision making authority to the team members.
We established an environment where making some mistakes or bad decisions were
acceptable.

This structure was a challenge to implement. The first challenge came when the project
leader had to share authority. This meant that the project lead had to give up knowing
everything about the project in detail. The project lead role emphasized information
brokering and supplying team members with the information necessary to accomplish their
tasks. This information ranged from company priorities to project priorities. The second
challenge was that project members had to accept responsibility. Team members had to
assume the decision making for their particular parts of the project and be accountable.
We also had to provide the project lead with the appropriate information for our clients.

9 7 -

Mentor Graphics In the Eye of the Storm

We initially introduced very few processes. These processes were infonnal contracts
describing some operating procedure, often between just two people. We only added new
processes after:

o finding a difficulty either within or outside the group or in the group's interactions
with others

o identifying and clearly understanding the problem

o detennining that a new process was the only way of resolving the problem

The goal was to maintain individual productivity by avoiding unnecessary bureaucracy.

We increased our efficiency by avoiding committee decision making situations. Instead,
we encouraged either unilateral decision making or decisions made by pairs of people.
Oversight and review occurred in small groups through infonnal and well defined
processes. For example, designs were regularly reviewed by the design engineer and the
technical writer. The engineer explained the design and presented the design notes to the
writer. If the writer objected that the explanation was unclear or too complicated, the
engineer either clarified the design notes or re-did the design.

This team structure improved motivation, efficiency, and communications. Pride of
ownership and knowing that decisions made by individuals could impact the success of the
entire project motivated the team to strive to do their best. Because each team member
knew the responsibilities of the other team members, internal communications became
more efficient. Questions and concerns were directed to the appropriate person the first
time rather than being shuffled from member to member. External inquiries were
adversely impacted only to the extent that not everyone outside of the project knew how
responsibilities were divided. However, each team member took the responsibility of
directing the inquiry to the appropriate person.

The strong project identity and the confidence that team members gained from it helped
the team to weather the stonn. Changes that occurred in the surrounding development
environment had less impact and rarely disrupted the project.

2.2 Prototyping

We developed a working version of DSS quite early in our development process and
maintained it until the product shipped to customers. We found the costs of maintaining
this working version to be fairly high, but the long tenn benefits outweighed the costs.
Because DSS and the Falcon Framework were developed concurrently, we had to
implement major pieces of the system that would later be replaced by the Falcon

9 8 -

Mentor Graphics In the Eye of the Storm

Framework source code. On the one hand we developed disposable code, but on the other
hand that very code insulated the project from major functionality changes made to the
Falcon Framework. We had the freedom to gradually migrate to the new source code or
choose low risk periods in the development cycle. We used the prototype both internally
and externally as a means of communicating our product vision. It also let us identify and
correct usability problems early in the development cycle.

Along with the prototype, we focused on end-user documentation rather than writing a
functional specification. We maintained a usable version of the reference manual and
quick reference guide throughout the life of the project. We set our documentation
priorities by estimating document longevity and audience size. Documents with an
expected long lifetime and large audience got top priority.

Having a working prototype and user documentation gave us continuous feedback from
internal and external customers. We knew that if we were to be successful, we needed to
listen and respond to our customers. Knowing our customers needs gave the project team
a common, indisputable goal that we were doing the correct tasks.

2.3 Planning

Planning was an essential component for us to remain in the eye of the stonn. Knowing
what our priorities were and thus what needed to be done and how long it would take to do
it provided us with all the protection we needed against the stonn.

We identified tasks and assessed their cost several times within a release cycle. A typical
tasking cycle, where we assessed the time it takes to do a task, took us about 30 to 45
minutes. The result was a detailed task list which was available at all times to team
members. Regularly identifying and assessing tasks gave us a chance to revisit our
priorities and check our progress.

Identifying tasks was not always easy. The most difficult aspect in identifying tasks was
defining the granularity of a task. Should a job that took an hour be considered a task?
Should jobs that took at least a half day be considered a task? In the end, team members
defined their own task granularity. Most of the team considered a task to be a job that took
at least a day. Jobs that took less than a day were accounted for in the amount of overhead
included in the schedule.

The responsible team member identified and assessed the cost of their own tasks. Team
members collaborated on group tasks. Our primary estimation method was to compare
similar tasks. Initially, we were poor at estimating the cost of a task. We carefully
compared our estimated cost of a task to the actual cost to complete the task; this helped us
make better cost assessments the next time. Our goal was to get good at estimating the

9 9 -

Mentor Graphics In the Eye of the Storm

cost of a task, not to keep score on how well we did.

We became good at estimating known tasks but found that unexpected tasks were causing
us to miss our targets. Unexpected tasks were primarily tasks we failed to identify that had
to be completed or tasks that were added after our planning cycle such as new customer
requirements. We measured the impact on our schedule of these "unexpected tasks" over a
period of several tasking cycles and now add a multiplier. For example, approximately
10% of our engineering time was spent completing unexpected tasks, so we multiplied the
total time to complete all our tasks by 10% and added this figure to the total. We continue
to monitor the amount of time spent on "unexpected tasks" and adjust the multiplier
accordingly. Another variable we monitor and add in as a multiplier is our cost to support
clients using DSS.

When we found dependencies between tasks, we attempted to assign them to one person,
even if doing so meant some additional training or reorganization of the source code. Our
purpose was to reduce the dependencies and communications overhead within the project
and increase our productivity.

This sort of planning was a critical asset to the project. We gained experience in
producing accurate time estimates. We now have the reputation for providing and keeping
detailed and accurate schedules.

2.4 Pacing

We knew from the early phases of development that it would take several years to get the
product to market. We were concerned that the team remain intact for the duration. We
developed a work pace and style designed to encourage sustained productivity. Our
objective was to work smarter, not harder. We planned and scheduled our tasks very
carefully. We focused on the tasks scheduled and guarded our concentration by capturing
issues of the day but deferring our responses to them.

Capturing issues but deferring our responses was perhaps the most important action we
took to pace ourselves and complete the project. It kept us focused on our priorities. We
often found that, in retrospect, the issues of the day became a much lower priority than
they originally appeared. Occasionally, they went away completely.

2.5 Software Tools and Techniques

For software version management, we used a tool available from HP/APOLLO called
"DSEE". We assigned a single engineer to master this tool, maintain it, and provide
training for other engineers. Our software release process was also managed by a single
engineer who had complete responsibility over the release process.

- 1 0 0 -

Mentor Graphics In the Eye of the Storm

A technique we called "usage analysis" proved very valuable during software
development. It involved a real-time search of various text databases in order to generate
cross reference information. This technique required only simple pattern matching
technology and access to source text over a network. With the AEGIS "fpat" pattern
matching tool, similar to the UNIX "grep", we were able to write shell scripts to quickly
find instances of function or class usage in unfamiliar source code. This gave us the most
reliable and up-to-date information. For this project, we developed over 50 scripts to
search everything from problem report data bases to source code repositories and system
libraries .

To understand some large subsystems, this simple technique proved to be more useful than
analyzing more conventional forms of support documentation. It let us focus on the
problem and simultaneously allowed us to gradually understand a design. It gave us a
client's picture of the design and let us determine how well client's requirements were
being met. Many times we were able to simplify our design based on this information.

Much of our project information was stored in simple text files. We accessed this
information via a project notebook. The project notebook consisted of another set of text
files that contained mostly file references. A simple key definition let us point and click
on one of these pathnames to bring up its view. In use, the system had a "hypertext" like
quality. All of these files were stored in a single directory. At the time of this writing, that
directory contains over 2000 files, all related to some aspect of the DSS project.

Although not sophisticated, this simple text database served our needs well. Information
access was very fast, due largely to the presence of the reference notebooks. Many team
members had similar, personal notebooks with links to the master text files.

We used assert statements in the source code to improve our software quality. Assertions
act like correctness monitors. They are best captured as code is designed, when
assumptions are fresh in your mind. Because they do not change the behavior of the code,
they can be added at any time.

We found that errors caught by assertions are cheaper to fix than other types of errors. We
suspect that this is because they tend to uncover problems at the point where the problem
occurs. Our source code contains over 900 assert statements, or about 2% of the total
source. 17% of all the errors found in DSS were found by assert statements.

- ' 0 ' -

Mentor Graphics In the Eye of the Storm

3. Test & Measurement
3.1 Test Strategy

We faced the challenge of assuring our customers that DSS had the functionality, usability,
reliability, and performance they expected. We used a number of strategies to reach our
goal.

Most of the tests developed for DSS were at the system level. System-level testing divided
into the following areas: user interactions, DSS functions, ASCII and Code Level
interfaces, application development, and help testing. In addition, we ran performance
tests, configuration tests and integration tests.

Wherever possible, tests were automated using a variety of techniques. The primary
technique used the DSS ASCII metafile. Because the metafile had a predictable format,
we could generate the DSS test metafiles using internal tools that both documented and
generated test cases. This allowed us to efficiently add to the existing test suite and still
maintain existing test cases. DSS metafiles execute when loaded or when specific function
calls are made. Therefore running the test suite essentially consisted of loading the test
metafiles into DSS and evaluating the results. This test methodology covered 90% of DSS
functionality. The remaining 10% divided between the graphical interface and the
userware. The graphical interface tests were visual inspection tests. Because DSS was
built on top of the Falcon Framework, the UIMS project team tested much of the user
interface. The userware was tested by replaying physical transcripts. A physical transcript
is a file of low level screen coordinates and key actions. Initially, physical transcripts were
generated manually by logging the actions and saving them to a file. An internal tool was
developed that allowed us to specify in an ASCII file the actions in a high level language.
The file was then "compiled" into the screen coordinates and key actions. We ran the test
by replaying the file in DSS.

We implemented new or changed functionality that was high risk to the product as early as
possible in the development cycle. The changes were released to the project team as soon
as the development engineers believed it was stable so that everyone had the opportunity
to use the new or changed functionality and in general lived with the new release. There
often were a number of these "mini" releases depending on how much of the source code
needed to change. Although we created formal test cases for all new and changed
functionality, this general usage testing by the project team often found interactive and
multi-task problems that were difficult to find as part of the formal testing.

We used test coverage analysis to prioritize the test case development. We used an
internal tool to compile the source code. The binary produced by the tool was
instrumented so that it counted the number of times a test or test suite executed a

- 1 0 2 -

Mentor Graphics In the Eye of the Storm

statement. Once the tests ran on the instrumented binary, we generated a report that listed
the percentage of the code exercised on either a per module or per function basis. This
information told us which areas of the code we were not testing or were only lightly
covering. QA and development engineers worked closely to identify critical areas of the
source code to test and the specific test cases that would exercise the code.

In four months, our test coverage went from 0% to 70%. We also had an automated
acceptance test suite and an automated regression test suite that we could use to test
phased releases. In nine months, at the Code Freeze milestone, we had 84% test coverage
and all major areas of functionality tested. This exceeded our highest goal, which was
80%. During this period, we supported one Alpha release and three Beta releases to
customers who were willing to evaluate our software. In addition, we supported a number
of customer and conference demonstrations.

3.2 Quality Measurements

We measured our quality based on four attributes:

[J Functionality

[J Usability

[J Reliability

[J Performance

In addition to these attributes, we established specific Release criteria for releasing the
product.

3.2.1 Functionality

Functionality was measured in two ways:

[J Test coverage

[J User feedback

Our test coverage, as described previously, was measured by an internal tool applied at
compile time. The tool instrumented each executable statement so that when we ran our
test suites on the instrumented binary code data was collected on the statements exercised.
We generated reports using the collected data which gave an overall coverage figure as
well as coverage data on specific modules and functions.

- 1 0 3 -

Mentor Graphics In the Eye of the Storm

Our goal for DSS was to reach 80% coverage by the release date. We exceeded our goal
and reached 84% test coverage. We accomplished this by regularly running our tests on an
instrumented version of DSS. In a six month period we ran our tests on an instrumented
version of DSS four times. This allowed us to evaluate where our coverage was weak and
create specific tests to exercise that aspect of the code.

In addition to test coverage analysis, we asked users to rate product functionality. Internal
users and beta customers, approximately 6 sites, were asked to rate the degree to which the
product possessed the necessary and sufficient functions. We used a scale from 1 to 5,
where 1 was very unsatisfied, and 5 was very satisfied. DSS had an average score of 4.6
points.

3.2.2 Usabil ity

Usability was measured in two ways:

o OSF/Motif compliance

o User feedback

Motif is a user interface standard established by the Open Software Foundation (OSF), of
which Mentor Graphics is a member. In addition to the Motif standard, Mentor Graphics
extended the interface to include specific items our customers were accustomed to using so
as to provide a common user interface. Much of the Motif standard was implemented in
the Falcon Framework that DSS was built upon, but DSS controlled some areas. We
completed the Motif/MGC extended checklist showing that DSS was compliant with the
standard.

We also asked our users to rate our usability. They were asked to rate the amount of effort
required to understand, learn, and use the product. They used a scale from 1 to 5 where 1
was very unsatisfied and 5 was very satisfied. DSS had an average score of 4. 1 points.

3.2.3 Reliabil ity

Reliability was measured in the following ways:

o Declining defect discovery rate

o Open defect count

o Weighted defect count (WDC)

o User feedback

- , 0 4 -

Mentor Graphics In the Eye of the Storm

Defect discovery rate is the rate at which problem reports are filed against the product.
Our goal was that the defect discovery rate would decline for 5 weeks prior to the Code
Freeze milestone. Our defect discovery rate declined for 4 weeks prior to the project code
freeze date.

The open defect count is the number of open, and therefore unaddressed, problem reports.
We met our goal to have the open defect count not include any severity l or 2 reports.
Severity was determined using the following standards: severity 1 reports caused a crash
under normal operating conditions, resulted in corrupted data, or produced misleading
results and there wasn't an alternative that could be used to obtain the same functionality;
severity 2 reports were the same as a 1 but an alternative method was available; severity 3
reports were a significant deviation from the product documentation; severity 4 reports
were a minor deviation from the product documentation, inconsistent, or inconvenient to
use.

The weighted defect count (WDC) is a weighted count of all the open problem reports
against the product. Severity 1 reports were valued at 6 and low severity reports were
valued at 1 . Our goal was 27 weighted points or less at code freeze. This value reflects 6
weighted points per 10,000 lines of non-commented source lines of code. Our actual
WDC count was 43. Although we did not actually make our target, we went back to all
our clients and asked that they inform us of any release critical reports, regardless of the
severity. Our clients assured us that the remaining open reports were not release critical.

In addition to asking our clients about release critical reports, we asked them to rate the
reliability of DSS. They were asked to rate the capability of the product to maintain its
level of behavior under stated conditions for a stated period of time. They used a scale
from 1 to 5 where 1 was very unsatisfied and 5 was very satisfied. DSS had an average
score of 4.3 points.

3.2.4 Performance

Performance was measured with user feedback. Users were asked to rate the capability of
the product to perform the specified functions under stated or implied conditions within
appropriate time frames, using appropriate amounts of resources. They used a scale from
1 to 5 where 1 was very unsatisfied and 5 was very satisfied. DSS had an average score of
3.2 points.

Because DSS is a new product, and no other comparable product is on the market, we did
not make any assumptions about performance, other than what our users told us. We are
in the process of establishing benchmarks that we will use in subsequent releases to
measure our performance. We will continue to ask our customers where they find the
performance unacceptable so that we can concentrate our energies in the most important
areas.

- 1 0 5 -

Mentor Graphics In the Eye of the Storm

3.2.5 Release Criteria

In addition to the four attributes used to detennine whether DSS was ready to ship,
described previously, we also used some internal requirements to monitor our progress:

o Phased Release criteria

o Evaluation Start (ES) criteria

o Code Freeze (CF) criteria

o Transfer to Release Team (TRT) criteria

The last three criteria correspond to milestones in the Mentor Graphics Product Life Cycle
(PLC). The PLC is a set of milestones, with corresponding check lists, that track the
progress of a product from the earliest phase, developing requirements, through the
complete life of a product to the final phase, discontinuing the product.

The Phased Release criteria were that the QA acceptance tests passed and all fixes to client
critical problem reports were verified. The project team also answered the question "Was
this version of DSS better than the last?" If we could not answer a unanimous yes, then we
re-evaluated the problems that caused us to respond negatively.

The Evaluation Start criteria were that the phased release criteria were met, the PLC ES
milestone checklist had been completed, and all functional objectives were met. In
addition, all high severity problem reports had to be resolved and our test coverage had to
be 70% or greater.

The Code Freeze criteria were that all the ES criteria were met. All the metrics for the
attributes that were previously described had to be met and the PLC CF milestone
checklist had to be completed.

The Transfer to Release Team criteria were that the CF criteria were met and that the PLC
TRT milestone checklist had been completed.

4. Summary
The eye of the stonn, we believe, can be found. Central to finding the eye appears to be a
focus on communications issues:

o Increasing communications with potential customers

- , 0 6 -

Mentor Graphics In the Eye of the Storm

This allows your design team to stay focused on tasks that satisfy the customer. Early
prototypes can help communicate your product as well as provide a forum for
continually refining that vision.

o Co-locating team members

The close proximity of the team facilitates the flow of information. However,
controlling communications flow and reducing or eliminating unnecessary
communications is important for increasing overall effectiveness of your team.

o Deferring the "problem of the day"

This strategy can help you stay focused on priorities.

o Providing accurate task estimates

This allows others in the organization to make and execute plans without continually
tracking your progress.

o Empowering individuals

Sharing responsibility and authority reduces the need for communications.

We have been asked many times to what extent we believe these techniques are applicable
to larger groups. Certainly, considerable productivity gains can be had by empowering
individual workers; and this empowerment can occur regardless of group size. The skills
and techniques in planning and prioritizing are also achievable on an individual level. But
many of the communications techniques described in this paper do not appear to scale up
to larger groups. In larger groups information flow is complicated by organizational,
geographic and temporal barriers. Organizations can be fine-tuned by carefully examining
and re-engineering their internal processes. And we are all familiar with the role that
electronic mail and video conferencing technologies play in bringing our organizations
together. But increasingly one hears that although the information is there, it is not
collected and delivered where and when it is needed. People can collect and deliver this
information, but people are already too busy. Computer-based tools are needed that can
take an active role, rather than a passive role, in the organization. When information
critical to the organization changes or when data needs to be monitored on a regular basis,
these tools would provide the information without the need for human intervention.
Human resources can then be applied to decision making rather than to information
monitoring tasks. Although tools of this sort are just now being developed, we think they
will play a key role in achieving the next major level of productivity gain.

- 1 0 7 -

Experiences with Defect Analysis

Brian K. Casey and Jan L. Sun

ABSTRACT

This paper describes the techniques and tools that have been developed and
implemented at Bellcore for the analysis of software defects in software products
developed and licensed by Bellcore. The objective of software defect analysis is to
identify potential process changes that will enable the software developer to make
the greatest improvements in software quality and productivity. Measures of
expected quality and productivity improvements are presented from projects that
have performed software defect analysis. Practical issues such as resource
requirements, and technical and management factors for successful
implementation of defect analysis are addressed. Overall conclusions based on
Bellcore's experience with performing defect analysis on several projects are
provided.

The method used to perform software Defect Analysis requires the analyst to
answer several questions relating to the origin of the software defect, such as,
where in the software life cycle the defect was introduced, how the defect could
have been prevented, and how the defect could have been detected and corrected
earlier in the software life cycle. This information is collected and maintained in
a database. An analysis of the database can be performed to:

1) Identify the most frequently occurring and troublesome software
defects.

2) Determine where in the life cycle most defects occur.

3) Determine the most frequent root causes of defects.

4) Determine the effectiveness of different defect prevention and detection
measures.

5) Determine the expected productivity and quality gains of recommended
process changes.

Database analysis reports are available in the form of text and bar charts and are
reported in a way suitable for management to use to make more effective decisions
to allocate resources and time for process improvements.

- 1 0 8 -

I . Quality Improvement Through Process Improvement

A . The Costs of Poor Software Quality

1. Costs to the developer

Software costs have been growing at a rate of 12 percent per year since 1980
[1] . Most of this cost growth is due to increased demand for software
products with more features and versatility, yet nearly all users expect
software products to be more reliable and easier to use with each new
release. User demands for increased functionality and improvements in
versatility and ease of use result in software which increases in size and
complexity with each successive release. Figure 1. illustrates this
significant challenge to the software development organization that wishes
to improve the quality and reliability of its products. If the software
industry is to successfully meet this challenge, it must, at the same time,
improve the quality of its software products ml.d the productivity of its
development processes.

Defects/K LOC

K LOCs

Defect. Reported
by Users

Release A Release B
-

Release A Release B

Release A Release B

Release C
r--

Release C

Release C

Figure 1. The software quality and productivity challenge

Software quality and productivity experts agree that reducing software
rework (i.e. , fixing defects and retesting software) will produce the greatest
gains in software quality and productivity [1]. Studies have shown that

- 1 0 9 -

most companies spend about 20 percent of their time fixing and testing
software field defects reported during operation [2] . Cost data collected
from many different projects by Boehm has shown that the cost of fixing a
field defect is 20 to 1000 times more than fixing defects found during
development [3] . Costs incurred by the customer were not included in
Boehm's study. Preventing software defects or finding and correcting them
in the earliest stages of the software development life cycle will provide
significant cost savings while simultaneously improving software quality.

2. Costs to the customer

Bellcore has conducted several internal studies on the costs of poor software
quality and has found that software field defects almost always are much
more costly to the customer than the developer. The customer must expend
resources verifying the software defect, reporting it to the developer,
conducting "work around" procedures, and installing and verifying the fix.
In addition to these costs of "living with" software defects, software defects
in critical portions of a system (e.g. , telephone networks, airline flight
reservation systems, and electronic funds transfer systems) can result in
millions of dollars of lost revenue in a short time. Costs to the developer can
easily exceed the cost of fixing the defect if the developer is found liable for
the customer's losses. Since there are usually multiple customer sites
using the same software, these costs may be incurred many times for a
single defect.

B. Improving Software Quality Through "Focused" Process Improvements

Traditional techniques for improving software quality and reliability have
relied on removing software defects in the later stages of the development
life cycle. While defect removal activities, such as system level testing,
often provide immediate and significant improvements in software quality,
they do little to provide quality improvements that last throughout the life of
the product. Each effort to improve software quality with each successive
release must be started anew with increasing levels of testing required to
achieve continuous improvement in product quality and reliability. Testing
by itself removes only the defect and not its cause. With only test and
inspection methods in place, defects are removed one at a time, and the
same kinds of defects are often discovered in later releases and in different
parts of the product.

Since the late 1980s, there has been renewed interest in the use of process
assessments as a quality improvement tool [4]. The process assessment
focuses on examining the project's software life cycle methods, procedures,
and tools. During a process assessment, interviews with project personnel
and reviews of relevant documentation are conducted to determine the level
of compliance. The audit findings are compared against an objective

- 1 1 0 -

standard for software quality programs (e.g. , Bellcore's software quality
program standard, TR-TSY-00179 [5]), and a determination is made as to
whether the project's quality program meets the standard. While quality
improvements based on process assessment findings are longer lasting
than those based heavily on testing, the assessment itself may not
determine what process changes will produce the greatest improvements
in quality.

Defect Analysis is a "hybrid" method that determines what parts of the
process are producing the greatest number of defects and what
combinations of process changes could prevent the greatest number of
defects from being created or will find and fix defects while the software is
in its earliest stages of development. Quality Improvement that can achieve
these goals can produce the greatest improvements in quality at the lowest
cost. Since quality improvements are a result of process improvements, the
benefits are long lasting and incremental improvements to product quality
can be made economically. Defect prevention techniques that share many
similarities with Defect Analysis have been pioneered by IBM and have
been successfully used on large software projects in the commercial world
[5,6,7,8, 9].

I I . Defect Analysis

A. "Defect Analysis Paradigm"

The model of a feedback control system shown in Figure 2 best describes the
approach Bellcore has taken for quality improvement through process
improvement. The control system paradigm requires that critical product
attributes that are under control be periodically sampled and analyzed. The
results of the analysis are translated into adjustments to the process that
will produce the desired change to maintain control. The process continues
to be measured to determine if the process remains under control.

Feedback Analysis

Inputs Outputs

Measu rement

Figure 2. Feedback Control System Model

- 1 1 1 -

If we are to implement quality improvements using this paradigm for
software quality improvement, the following development practices should
be established:

1) software development activities should be "formalized" as a process
2) the defined software development process should be adhered to, and
3) the outputs from the software development process should be measured.

Since improving Software Quality means reducing the number of defects
that are produced during development, it seems logical that defects must be
sampled (assuming you have so many defects that sampling is needed) and
analyzed to determine what process adjustments should be made to
improve quality. The analysis of individual defects is based upon finding
the defect's "genesis in the process" and answering the following questions:

1) where in the process was the defect created and what caused the defect
to occur in the first place (the defect's root cause),

2) how could the defect have been caught at an earlier stage of the software
development life cycle (i.e., early detection measures), and finally,

3) what could have been done to have prevented this defect from occurring
(i.e., prevention measures).

B. Implementing Defect Analysis

1. Activities

Defect Analysis consists of four iterative steps: planning, analyzing
individual defects, analyzing the group of defects and, effecting change.
These activities and the sequence in which they are performed is depicted
in Figure 3.

Analysis of I ndividual Defects Analysis of Groups of Defects

PI

Davalop or Update Proca •• Model

Development Process

Figure 3. Defect Analysis Model

- 1 1 2 -

The planning step consists of developing or updating an existing life cycle
process model and determining what kinds of prevention and detection
measures should be considered as candidate process changes. Process
modeling consists of breaking down the software development process into
discrete life cycle activities. Each life cycle activity is decomposed into:

1) entry criteria (i.e., required inputs needed before the activity may begin)
2) process steps (i.e., a sequential description of essential activities and

products that are produced),
3) exit criteria (i.e., criteria that must be met for products to be considered

to have met quality objectives).

Defect Root Causes are related to a failure of a particular life cycle activity to
perform as required. Figure 4 shows how candidate prevention and
detection measures are created from entry criteria, process steps and exit
criteria. The possible Root Causes, Prevention Measures and Detection
Measures that are identified during this analysis are used in the defect
analysis checklist form (a more detailed description will be provided in the
discussion on Defect Analysis tools in this paper).

Describe Ute Cycle Activities as a Process Flow:

Entry Criteria

- What "Inputs" are required before start of process?

Process Step

- What must be done or produced?
- Methods

Exit Criteria

- Criteria for thoroughness and completeness

- Criteria for re-inspection

T
Prevention

�
T

Detection

i
Figure 4. Derivation of Prevention and Detection Measures

Planning also involves resolving administrative issues and performing the
groundwork for defect analysis. Decisions are made on administrative
issues such as: the kind of defects to be analyzed (field faults, system test
faults, etc.); the total number of defects to be analyzed as a group; the
frequency of team meetings (once a week, once every three weeks, etc.)
Groundwork to be laid is activities designed to help to ensure that defect
analysis is worthwhile for the project and to help to ensure that all team
members have a common understanding of the process. Depending on
whether the project has a consistent and documented process, the team

- 1 1 3 -

would either review the process or document the process and use that
process to make revisions to the form they will use to analyze defects.

The analysis of individual defects begins with the discovery of a defect by the
customer or during acceptance testing. An overview of the major activities
and players in the defect analysis process is shown in Figure 5. A
description of the defect is recorded and sent to the development
organization for resolution. Actual resolution of the defect is performed by
a product expert (often the individual responsible for that particular portion
of the software product). The product expert performs the initial analysis
and records hislher analysis on a written data collection form. The form
and any necessary backup materials are brought into the team meeting for
discussion. The team and the product expert discuss the defect and agree
on its root cause. Although the main idea of this activity is to determine the
root cause, the analysis also includes measures or techniques for the
prevention and detection of the defect. This is because discussion of possible
prevention and detection measures often leads to identification of the real
root cause. The analysis results are recorded on the form that is used to
input the data into a database.

Deleel AnalysIs Team:
• Analysis Defect Hislory
• Reeommends Process Changes

.IA:�' , 'f
'

. . " , ." � . -� , .

Deleel Analysis Team (Process Experts)
Reviews and Updales:

• Rool Causes
• Prevention Measure(s)
• Deleelion Measures(s)

Figure 5. Description of Defect Analysis activities and participants

Analysis of groups of defects is done by the Defect Analysis Team analyzing
defect history data and performing analysis using the defect database. The
team uses the database to determine specific areas that should be focused
on, and to identify any defects that require reanalysis. Most often, a defect
is reanalyzed when its root cause is commonly occurring, but an unusual
set of prevention and detection measures were recommended. When all of
the defects have been analyzed and entered into the database, the team
selects a set of the most effective process changes (prevention and detection
measures.) Choosing process changes could begin by identifying the

- 1 1 4 -

phase(s) with the most defect root causes then analyzing the prevention and
detection measures in the phase(s) to decide the best set, or the team could
identify the best overall combination of prevention and detection measures
across all life cycle phases. The set of process changes should be selected
based on the number of defects that would be prevented or detected earlier
in the life cycle and on the cost, effectiveness, and ease of implementing the
process change.

In order to affect change to the process, after all the recommended process
changes have been identified, the cost savings to the company is calculated.
The results, including the costlbenefit analysis, are documented in a report
to management so that the recommended process changes can be carried
out. When the changes are implemented the entire process is repeated.

Defect analysis from planning through reporting, when it is necessary to
document the development process, takes approximately 25 three-hour
meetings to complete. Factors that affect the total number of meetings
include: the number of defects analyzed, the amount of groundwork done,
the length of discussion allowed for each defect, and the number of defects
analyzed per meeting.

2. Participants

The process of analyzing a defect to find its root cause is a team effort.
Although the Defect Analysis Team (DAT) consists of "process experts,"
"product experts" also participate in these discussions. Through
discussions among process experts and product experts, a more thorough
understanding is developed and the conclusion is more likely to be the real
root cause. Process experts would be those who are very experienced on the
process that is followed for the various phases of development. For
example, a project leader of the requirements team probably would be an
effective "process expert" of the requirements phase. A product expert
would be someone who is well versed on the "product." For example, the
person who wrote the requirements that has an error would be an effective
"product expert" .

The final determination of the defect's root cause is reached through team
consensus; hence, the larger the team size, the longer it has taken to reach
consensus. Therefore, the right balance must be achieved between having
the right people on the team and the right number of people on the team.
Often, the Defect Analysis Team consists of "process experts" to cover the
entire life cycle, which suggests that some teams can cover the entire life
cycle with three process experts, and some would require six or seven. The
"product experts" would only join the meetings or discussions if their
particular product is the one being discussed. Once the team begins to

- 1 1 5 -

analyze the group of defects, only the process experts are required to
participate.

C . Defect Analysis Tools

Tools are necessary to streamline the defect analysis process and to help to
ensure that Defect Analysis activities are carried out in a complete and
systematic way. The tools that have been useful are:

1) a customized checklist form to aid the selection of root cause, prevention
and detection measures,

2) a database analysis tool to store defect data and automate the analysis
process, and

3) a report template as a guideline for reporting the results from the
analysis.

The checklist form provides a method for selecting possible root causes,
prevention, and detection measures when performing defect analysis. The
form helps to ensure that a consistent terminology and all frequently used
root causes, prevention and detection measures are considered when
analyzing a defect. Consistent terminology reduces the burden of trying to
decipher the analysis and recommendations of different people who have
analyzed defects. The checklist form has other advantages. For example,
putting the Defect Analysis results into the database becomes a simple job of
data entry since the database can be organized as menu selections.
Analysis of the data is also greatly simplified. A sample of checklist of
selections for root cause, prevention measures and detection measures is
provided in Figure 6.

Prevention Measures Detection Measures

U" , N.d. AlllnHlon lUND)-
1 . DtlinIIIDhaDCI .nd doaIlI1IIII UNO proctduIN

2. OIYlIop gulde_ lor opecIie UNO proctdu ..

3. UN UNO doaIlI1IIII ttmpla1t

4. ,*"irII or IDhanct I_I UNO doaIlI1IIII

5. EatabIIIh IOIIM! proctdurta lor UNO changta

6. Mtthod to tallmaIoIcommu_ UNO ""'**

7. 1_ UNO _ In � acheQ.Ilta
8. C!Itnt TAG cr Focw Gra.op UNO -...at

9. Uta SloE _ cooou Q,jrlng UN>

10. 0bIa1n UNO Input 110m k.y penonOl!

1 1 . Analysll 01 C!IIOt � or IDvIronll1llll

12. RecJlirII UNO IMsb!!!ty IIUdy
13. Provide PROJECT or UNO 1nin9lawa_
14. DIYI!op UNO ·"'" � .".".. ch,ddllt
15. Othlr (UNO):

v.,[H,.d. Deflnltlgn (UNp'·
1. Otllne and document UNO IIIv1ew proctdur ..

2. Cona.oct ,lIItmal UNO IIIYIIw wlh C!Itnt
3. Concb:t formal loterntl UNO �
4. E Illy penon"" aIIInd UNO IIIYIIw
S . • Moat ptababIe enors" checkllll . lJIIO .. view
6. EIIabIIIh IorrDIII lJIIO exl crIt8IIa Mel IIgnotl

'I'R
7. DeI!nt and doaIlI1IIII FRS lIlY_ proctdu_
8. Tralnin9la_ on FRS _ proctdu_
I. EnhaDCI _ FRS __ C!IIOt
10. EnhaDCI I_ 1nWMI FRS _

1 1 . ,*"irII SloE • FRS _

12. Enaura kly p8/W)llOI! aIIInd FRS IIIYIIw

13 . • Moat ptababIe _. chtck ... at FRS ravItw

14. EIIabIIIh formal FRS IlII crIt8IIa and IIgnotl

15. Other (UNO & FRS):

Root Causes

UH' N .. d. D,lIoHlpo lUND)'
1. UNO prootdur, not 8IhbbhecI
2. UN> proctdu .. WI aho!t I¥ IChedult
3. lJIIO proctdu .. not IoIIowd or enforced
4. lJIIO proctdulll not �

S. UNO IIllUI not IOIdttd or IIICIIvtd
6. UN> doaIlI1IIII not ptOductd or IDCCII1IIIte
7. C need or oper.aan �
8. IDIUIIdent or llte lMclllicll llllll1 �
I. F-nr IIUdy not perIDrmtd

10. Exped!ttd dweIcpmeIt dedtIon _ IDOOmICI

11 . �_ I __ not COIII!c!enId
12. La 01 PRQECT or UN> .lIpIfIta

la n _ oI c SI'I'PGII

1 4.

IS. OIlIer (UNO):

Figure 6. Prevention Measures, Detection Measures and Root Causes

- 1 1 6 -

Bellcore has used a database tool for performing defect analysis on its own
products for over two years. Since each defect in the database often has
more than one prevention measure and detection measure identified with it
(perhaps as many as six candidate process changes per defect), finding the
most effective process changes cannot be done by simply counting the
number of times they were selected and identifying prevention and
detection measures that were most often recommended during the course
of the Defect Analysis. The database tool keeps track of the defects that are
eliminated by a particular combination of process changes. The tool
presently can analyze different combinations of prevention or detection
measures. The database is used to eliminate the "overlap" created when a
defect is eliminated by more than one prevention and detection measure
and show the true effect of carrying out these process changes. These
calculations can be quite tedious when more than a couple process changes
and defects are analyzed. Figure 7. illustrates the "overlap" situation that
must be accounted for in the analysis process. Allowing a defect to be
eliminated by more than one process change means that defects must be
carefully accounted for when analyzing process changes.

Defect# 1
Defect# 2
Defect# 3
Defect# 4
Defect# 5
Defect# 6

Prevention & Detection Measures
C D

X

X

Significant Overlap (Note: Four defects are prevented by using prevention measures A & B)

E F

X
X

G

X

Figure 7. Effectiveness of combining process changes

Future plans for the database tool will allow the user to use estimates of the
expected effectiveness of a particular process change on each individual
defect and to use information on expected cost to implement the process
change in the next release (the present database tool assumes that all
process changes are 100% effective and have zero cost). The database tool
identifies the combination of process changes that will eliminate the
greatest number of defects for a given budget for implementing process
changes. Analysis of selected process changes consisting of combinations

- , 1 7 -

of both prevention and detection measures can be performed manually with
the tool. Text and graphics generated by the tool can be used in written
reports .

The report template provides a consistent way of presenting the Defect
Analysis results and the benefits of implementing the changes
recommended. The report template presents the recommended process
changes in a way that is easy to understand and shows the potential quality
improvement and the cost savings that could be obtained. The Defect
Analysis report has two purposes:

1) to inform management of the recommended process changes and their
costs and expected benefits, and

2) to provide enough information for a second party to implement the
recommended process changes.

I I I . Experiences Performing Defect Analysis

A . Benefits From the Analysis

A complete cycle of defect analysis has been conducted internally by
Bellcore on seven projects; each project analyzed between 20 to 50 defects.
We observed some intrinsic benefits to performing defect analyses .
Members of the Bellcore Defect Analysis Teams increased their awareness
of the software engineering principles. They also became advocates for
process improvements in Bellcore.

In the past, software engineering or quality assurance advocates always
preached process improvements without considering what actual errors
occurred. The process changes recommended in this manner were not
always accepted because of the lack of consideration of what actually caused
the faults. Defect analysis methodology identifies the process changes that
prevent specific field faults in the product. Therefore,the defect analysis
methodology is gaining support from development organizations in
Bellcore.

The Bellcore Defect Analysis Team's recommendations are usually well
accepted because the Team members are a part of the development team.
Their opinions are trusted because they are familiar with the development
process and not simply speaking from a set of ideals.

If the recommended process changes were implemented, the projects could
have seen a significant reduction of field defects, based on the opinions of
the Bellcore Defect Analysis Teams. The number of field defects would have

- 1 1 8 -

been 25% to 30% lower if we assume that the process changes were 33%
effective! in preventing the defects.

There could be significant savings resulting from the defect analysis and
implementation of the recommended process changes. Because the effort of
analyzing field defects is also significant, there is a desire to analyze the
costlbenefit of performing defect analysis. However, no data is available on
the cost to implement the process changes and on the savings to the user
when fewer software problems are encountered. Using available data on
the cost to analyze the defects and the cost to fix field defects, the potential
savings from the reduced field defects typically is one to two times the cost of
performing the Defect Analysis.

The entire defect analysis process for each new project takes roughly 20 to
30 meetings which range from two to five hours. It is expected that the
effort would be reduced if the projects continue with defect analysis on an
ongoing basis because the groundwork activities would not require as much
effort.

B. Process Similarities

In preparation of this paper, we analyzed the raw Defect Analysis data
from the seven Bellcore projects to determine if we can conclude that their

defect distributions are similar. Using a simple X2 test, we concluded that
not all the projects are similar in terms of their fault distribution. With
this, we cannot compare our fault distribution to the finding that
Ramamoorthy has published (i.e. , almost half of all software errors are
introduced during the requirements phase of the development life cycle)
[10].

Pareto analysis of the process changes does indicate some similarities in
the recommendations. Out of a total of more than 90 different prevention
measures which can be chosen, there were a handful of process changes
that were consistently chosen by the Bellcore Defect Analysis Teams in
their recommendations.

Five projects have chosen to recommend improvements to their existing
detailed design procedures. Four Bellcore projects chose to recommend
improvements to their existing system design guidelines or procedures.
All seven Bellcore projects recommended improvements to their design
procedures.

Assuming a 33% level of effectiveness for software process changes is conservative.

R. G. Mays [8] of IBM has reported that software development process changes can

range from 30 - 70% effective. Data collected and reported by Boehm and Thayer [3]
is in general agreement with this.

- 1 1 9 -

A checklist that identifies the errors that would most probably occur is
another item that is frequently recommended by Bellcore Defect Analysis
Teams. Two projects recommended checklists for the system design
phase. Four projects recommended checklists for the detailed design
phase. And, four projects recommended checklists for the development
and coding phase.

The most frequently recommended change in the functional requirement
phase is related to communications between developers , user consultants,
system engineers, and system testers. Four Bellcore projects recommended
obtaining user consultant input, obtaining key person input, or having
regular meetings with members of the development team,.

Five Bellcore projects recommended formalizing their unit test procedures
to either including a demonstration, test case review, or test results
documentation. Five projects recommended improvements to their project
code review or inspection procedures.

C . Implementing Process Changes

Most projects do not have problems accepting the recommendations from
the Defect Analysis Team. The Defect Analysis Team passes the
recommendations to their Bellcore Quality Improvement Team and the
Quality Improvement Team takes the recommendations, develops action
plans, assigns responsibility, and performs tracking of the action items.

Because most Quality Improvement Teams already had projects they were
working on, the recommendations are not getting implemented as soon as
the Bellcore Defect Analysis Teams would like to see. Another problem the
authors observed is that there is no mechanism to track the effectiveness of
the process changes. Ideally, if there is a measurement of errors at the end
of each phase, Defect Analysis Team should be able to determine if there is
a change in the error counts or fault distribution of a particular project.

D. Performing Defect Analysis on an ongoing basis

The initial effort to perform defect analysis is laborious and tedious. A good
way to build a defect database is to analyze small numbers of software
problem reports over a long period of time. As the defect data accumulates,
the results of the analysis become more meaningful. Tools like the design
checklist and the coding checklist can be revised with the ongoing defect
analysis of software problem reports. Historical defect data can be used to
determine if an organization's preventative measures have been effective.
Over a period of time the original class of problems should diminish only to
be replaced by a new class of problems. If the same problems continue to

- 1 2 0 -

appear, then the organization under review may need to review the
preventative measures that were put in place and take corrective actions.

Some Bellcore projects after having completed the first round of analysis,
have begun the analysis of defects on an ongoing basis. These projects meet
regularly about every two to three weeks to analyze the individual defects.
Quarterly reports are made on the progress of the team. When there is
enough data, the database is analyzed to determine recommendations for
process changes.

IV. Conclusions

The Defect Analysis approach to improving software quality and
productivity focuses on the elimination of the most frequently occurring and
troublesome software defects in the earliest stages of the software life cycle.
Conclusions regarding where maximum benefits can be gained are arrived
at objectively and are reproducible from the defect data collected and
analyzed.

In general, project teams tend to be transitory in nature. The members of
the " 1st generation" project team (i.e., software product's emerging state)
struggle with the requirement writing, designing, implementing, testing
and timely delivery of a software product. The members of the " 1st
generation" project team accumulate experience during the struggle and
then usually move on. Defect Analysis provides a repository of "lessons
learned" from the "1st generation" project team. Continued defect analysis
benefits subsequent project teams and improves the quality of the software.

V . Aclmow��n�

The authors would like to recognize Gardner Patton of Bellcore for his
contribution of the Defect Analysis Team concept which is used in Defect
Analysis . We would like to thank Robert Hausman, Jen Tang, and Robert
Thien of Bellcore for their invaluable assistance and input with the
statistical analysis techniques used in Defect Analysis and review of this
paper.

- 1 2 1 -

V I . Referenres

1. Boehm, Barry W., "Improving Software Productivity", IEEE Computer, Vol. 20,
no. 9, pp 41-57, September 1987

2. Glass, Robert L., Ronald A. Noiseux, Software Maintainer 's Guidebook ,
Prentice Hall, Englewood Cliffs, NJ, 1981

3. Boehm, Barry W. , Software Engineering Economics, McGraw Hill Book
Company, New York, NY, 1981

4. Humphery, W.S. , "Characterizing the Software Process: A Maturity
Framework", IEEE Software, pp 73-79, March 1988.

5. TR-TSY-000179, Software Quality Program Generic Requirements , Issue 1,
July, 1989

6. Jones, C.L., "A Process-Integrated Approach to Defect Prevention" , IBM
Systems Journal, Vol. 24, no. 2, pp 150-167, 1985

7. Ryan, J., "This Company Hates Surprises", ASQC Quality Progress, Sept 1987

8. Mays, R. G., C. L. Jones, G. J. Holloway, and D. P. Studinsky, Experiences
With Defect Prevention", IBM Systems Journal, Vol 29, no. 1, pp 4-32, 1990

9. Fagan, M.E. , Design and Code Inspections to Reduce Errors in Program
Development, IBM Systems Journal, Vol. 15 no. 3, pp 182 - 211, 1976

10.Ramamoorthy, et. al. "Software Engineering." IEEE Computer, October
1984.

- 1 2 2 -

Methods and Mechanics of Creating

Verifiable User Documentation

Andrew Oram
August 2, 1991

Hitachi Computer Products (America), Inc.
Open Systems Software Development
Reservoir Place
1601 Trapelo Road
Waltham, Mass. 02154

E-mail: uunet!hicomb!oram. hicomb!oram@Uunet.uu.net

Abstract

User documentation, long considered an unwelcome responsibility for
software project teams, can actually be produced with the same processes of
specification, verification, and measurement as the other deliverables in a
computer system. This paper describes a practical, inexpensive method that
some commercial computer vendors are using to create and review their
manuals. It uses a simple form of constructive specification to determine the
valid operations that users can perform. The method leads to a set of usage
models and a series of examples that can be integrated into automatic
regression tests. Benefits include better documentation of environmental
needs such as prerequisites and restrictions, clear links between user tasks
and product features, and regular automatic checks on the document's
accuracy.

Biography

Andrew Oram has written manuals about network administration and
programming, array processors, compilers and debuggers, and real-time
computer systems, and has developed regression tests and standards
covering documentation for Quality Assurance teams. Recent projects
include programmer's documentation for the Hitachi port of the OSP/1
operating system, and a revision of Managing Projects with make for O'Reilly &
Associates.

- 1 2 3 -

The software field has long held an ambivalent attitude toward user documentation. Programmers
and Quality Assurance staff definitely appreciate when a good manual helps them learn about their
own projects. And in the software engineering literature, one would have difficulty finding a text that
fails to list user documentation as a deliverable. But on the other hand, engineers do not feel com
fortable with specifications and evaluation in the area of user documentation. Thus, many relegate it
to the fringes of their projects, sometimes tacking it on at the last minute. Ironically, the trend in
software engineering literature [such as Boehm, 1981 ; ANSlIIEEE, 1986] is toward the other
extreme - to treat user documentation as part of software requirements, and thus to insist unrealisti
cally that it be largely finished before software design even begins.

This paper tries to bring the little-researched area of user documentation within the software
engineering fold. I will describe a practical , inexpensive method that some commercial computer
vendors are using to verify and monitor their manuals. Software project managers, designers, and
Quality Assurance staff can use the method to extract the verifiable elements of documentation and
work them into specifications, test plans, and schedules.

The stage in this method resemble the informal techniques that many people use when they have
to document software - roughly:

1 . Decide what features to discuss.

2. Play with sample applications in order to learn how the software works.

3. Organize the models, procedures, warnings, and other insights into a reasonable sequence.

The contribution of this paper is to give these techniques a firm grounding in software engineer
ing. This makes the difference between an unstructured play activity and a discipline that supports
goal setting and resource allocation (without losing any of the fun).

In pursuit of verifiability, this paper defines exactly what a "feature" is, and offers a complete list
of questions that have to be answered in order to document each feature. I also show how to deter
mine that the applications discussed are truly of value, and how to associate the models offered to
readers with the actual steps they must follow to use the software. Every stage of the method
includes rules for bounding the activity, recording progress, and reviewing results.

Before I launch into the theoretical underpinnings, let me describe some incidents that give the
flavor of what it is like to work with this method in a commercial environment.

• During the development of a real-time operating system, the examples from one manual were
tested on systems with up to four processors and judged correct. However, during the next release
of the product, the test team obtained an eight-processor system, reran the regression suites, and
found a subtle omission in one of the examples. It took less than an hour to correct both the
example and the explanatory text in the manual .

• In the documentation effort for parallel-processing tools, a relatively trivial example turned up an
internal compiler error in the assignment of classes to variables. The error had never been found
by regular QA tests because one class was rarely used, and because the tester focused on stress
testing with unrealistic programming constructs. The documentation example performed a more
realistic operation mixing data of different classes, and thus triggered the error .

• On a project in data base administration, the writer analyzed the material to find the first task an
administrator would be likely to perform. She discovered that the required knowledge for this
task (initializing the user security information) was currently divided among three separate manu
als. In a few months, she produced a tutorial that covered this basic task and several others in
simple, procedural fashion .

- 1 2 4 -

User documentation is the culmination of a long process of discussion and experimentation
throughout a software project. Therefore, while this paper's main impetus is to foster better publica
tions and on-line documentation for users, some of its recommendations will affect a project's internal
documentation and staff training. Thus, the paper should interest people concerned with improving
education and communication among their programming staff, and particularly with ways to dissem
inate the insights of project designers and senior members to other people on the team.

The next three sections - GOALS, THEORY, and ROLES - show the method's general fitness
for software documentation. The bulk of the paper is devoted to a history of practical applications:
a stage-by-stage description in METHOD, and a discussion of implementation details in MECHAN
ICS. I end with a summary of the method's current status in BENEFITS.

GOALS

The traits of good documentation that can be developed through a rigorous method are:

• To list the prerequisites for each feature.

• To illustrate each feature of the product in a context recognizable to readers.

• To lead the reader in small steps from simple uses to complex uses.

• To cross-reference between high-level concepts (like user tasks and programming models) and
lower-level concepts (like system prerequisites and product features).

• To reflect changes in the product through its lifetime.

By way of contrast, here are some traits that cannot be verified formally, but depend on the indi
vidual skill and subjective judgement of the document's producers - and therefore, lie outside our
discussion.

• To use terms appropriate for its readers.

• To offer the right amount of general background information.

• To use a format and a layout on the page or screen that it is easy to follow.

• To remain free of typographical errors and other problems that lie in the gap between the material
that is verifiable and the actual printed material .

The verifiable traits of documentation are essentially linked to features of the product and its use,
while the non-verifiable traits cover the psychological aspects of the document and its translation into
a medium of distribution.

Desirable results are not enough to define a useful working method. The implementation must
also be feasible in a commercial environment. Thus, a method to produce verifiable documentation
should meet the following procedural requirements.

- 1 2 5 -

• Repeatable use.

The verifiable traits of the documentation can be checked through regression tests at regular
points in the software's development cycle.

• Low cost.

The method adds a relatively small burden to the existing responsibilities, schedule, and computer
resources of a commercial project team.

• Scalability.

The same essential techniques can benefit small projects (such as one-person MIS projects
directed toward a few in-house users) as well as large ones (commercial software for end-users,
where the documentation is the critical entry point to the product) .

• Ease of integration and knowledge transfer.

The techniques ring familiar to well-trained engineers and Quality Assurance staff, and can be
adapted to whatever standards they are using for other software maintenance efforts.

• Value for retroactive use.

The method can be used to produce documentation for software that has already been released,
and even software whose original designer has left or whose project team has disbanded.

THEORY

Other articles [Oram, 1989; Oram, 1991] have laid out and justified the underlying thesis for verif
iable documentation:

The critical issues determining the quality of software documentation lie in the structure
of the software itself, not in stylistic choices made by the writer.

This paper will show that one can produce a complete description of a system's use by tracing data
transformations from one function to the next. The supporting theory for our endeavor is construc
tive specification. It may seem a surprising choice, since the theory is best known as a somewhat
academic, labor-intensive method for constructing formal proofs [Jones, 1980] and as a way of deriv
ing classes in object-oriented programming [Stoy, 1982] . But in this paper, constructive specification
proves to be a simple and powerful way to link software's use with its logical structure.

The basic idea behind constructive specification is to describe every data object in terms of the
operations that the program will allow. For instance, you can write a specification for a stack by
describing three operations: initializing, pushing, and popping. For the purposes of documentation,
we can set both a direction and a boundary to our efforts through the following rule:

The specification of a user document is complete when it includes every operation that is
valid on every data object that affects system state, within a sample application that
causes a change from one user-recognizable system state to another.

- 1 2 6 -

Let us now decipher the key phrases "every data object that affects system state" and "user
recognizable system state." We can then join the theory to a broader view of mental models and
links.

Data Affecting Product Use

Data that pertains to user documentation falls into two categories: function arguments and
static data (which includes data stored in external media). One benefit of developing sample
applications is that they help to reveal the user's dependence on state information. A document
based on examples is unlikely to leave out critical prerequisites or environmental needs, such as to
mount a disk, to reserve unusually large buffers, or to log in with special privileges. All these
environmental needs (loosely related to the concept of "non-functional requirements" in [Roman,
1985]) are stored as the internal static data mentioned earlier.

Sample Applications

Applications, according to the rule stated early, should causes changes between "user
recognizable" states. This stipulation is meant to rule out dummy examples, like one that simply
converts an integer to a character string. By contrast, a simple example of calculation and report
generation that include conversion between an integer and a character string can be a valuable
teaching tool, because the conversion now becomes part of a larger task and is justified by the
requirements of that task. Because such an example is anchored by useful, recognizable states at
both the beginning and the end, I have coined the term portal-to-portal verification to describe it.

Sample applications can emerge through both top-down and bottom-up approaches. The top
down approach, which is the more familiar one, consists of collecting benchmarks and customer appli
cations that the product is meant to support, and breaking them down into small pieces that are
independently verifiable. But this cannot ensure full coverage of all operations on all data items.
Thus, it must be accompanied by the bottom-up approach, which is to trace data transformations
using the method in this paper.

Here is a simple example of bottom-up design. The basic operations on a file identifier include
assignment (through an open statement), reference (through read, write, and close statements), and
ancillary operations (like FORmAN's INQUIRE or the C language's stat). Thus, one can create a
simple portal-to-portal example by opening, writing, and closing a file. Verification could consist
of comparing the resulting file to a canned version, or of reading the data back into the program
and checking it for consistency.

Simple as such an example is, the lessons it embodies are by no means trivial. It can be the tem
plate for sophisticated applications like imposing structures on raw binary data, and opening a pipe
with non-blocking (asynchronous) access. Using the method in this paper, one can build a complete
description of file handling through a series of progressively more complex examples.

This paper is the first, to my knowledge, to suggest a disciplined method using examples to assure
full product coverage. I have found only one other discussion of user examples in the software
engineering literature [probert, 1984] but it considers them a source for tests rather than a training
tool .

- 1 2 7 -

Software Structure and Models for Use

One goal of computer documentation is to identify user tasks. But the defining characteristic of
a "task," in the area of computer software, is that it really consists of many tasks on different con
ceptual levels.

For instance, in a relational database, users might define their task initially as retrieving the
entries that match certain criteria. But to begin using a typical query system, they have to redefine
this task as "building a view." This task in tum depends on a lower layer of tasks like choosing the
keys to search for, creating Boolean search expressions, and sorting the entries. The documentation
discussed in this paper helps users develop the necessary thought processes for figuring out how to use
the software - that is, for decomposing their tasks until they reach the atoms represented by the
product's features.

Cognitive scientists and educators have focused on the concept of mental models to explain how
people assimilate information and apply it in new situations. The more sophisticated research [for
instance, Brown, 1986; Norman, 1986; Frese, 1988] bolsters the strategy used in this paper: that of
matching the models of product use to the logical structure of the software.

Verifiable documentation builds models from the structure of product itself, which offers both
richness and accuracy. The models are simply the uppermost layer of user tasks, such as "searching"
in the example of a data base. The user who consults the documentation in order to perform a search
finds a progressive break-down into lower levels of tasks, ending perhaps in the arguments of a
WHERE clause in SQL.

In this paper's method, models map directly onto the designer's construction of the software. For
example, a real-time programming manual could divide applications into cyclic and interrupt-driven.
Cyclic applications could then be broken down further into those running several independent
threads, and those running several functions repeatedly in one thread. The manual can then
describe the environments in which each model would be most advantageous, and implement
each model through procedures and examples.

Links and Document Structure

For initial, learning purposes, users tend to read in a linear manner (even though they also tend
to start in the middle and skip around a lot). For reference and trouble-shooting purposes, they
prefer to search a hierarchical structure, such as an index or an on-line set of hypertext links.

No one uses every feature in a product. But one can be certain that certain sets of users need par
ticular combinations of features. Thus, I use the metaphor of terraces to describe the structure of a
computer document. Each terrace consists of an example with its accompanying explanation. A
document can have many "hills," each consisting of a set of terraces that increases gradually in
complexity.

Thus, in a database product, one hill could offer more and more complicated examples of retriev
ing keys, thus showing the reader various ways to build a view. Another hill could solve the problems
of physically storing large databases. Users can climb the hills that they need for their particular
applications, and ignore other hills entirely. If new features or new applications are added during
product development, the writer can find places for them near the top of the terrace hierarchy. But
the disciplined creation of sample applications ensures that users can associate tasks with product
features.

- 1 2 8 -

ROLES

The main goal of this paper is a good document to be delivered to the users. But its philosophy
applies to internal project documentation too. Broadly speaking, this paper asks:

How do software designers convey their insights to the less experienced team members
during product implementation, and ultimately, in manuals and training courses, to the
end-users of the product?

Like any planning strategy, the method in this paper is least expensive and most beneficial when it
is employed from the earliest phases of a project . The managers who initiate the project can, with
fairly little effort, preserve some of the user applications driving the project in the concepts and
requirements documentation.

Software designers definitely have usage models in mind as they find common sub-tasks, create
modules, and define system-wide data structures. The models should be explicitly documented in the
software design descriptions. If the designers do not have time to create full examples, they can
delegate the work to other team members - in either case, the intellectual process of creating exam
ples helps to define the product and describe it to the team.

The method in this paper is equally valuable in the unhappy - but all too common - situation
where a product has been in the field for a long time without adequate documentation, and the pro
ject team hires a writer to redress the situation. Now the method provides guidance for reconstruct
ing the lost information on use. Categorizing and tracing the data helps to establish essential informa
tion, like what each command option is for, and what distinguishes similar commands. Where
features cannot be understood, and further research on user applications is needed, the method helps
the writer identify missing information and pose the right questions.

METHOD

In a commercial environment, the production of verifiable documentation falls into three distinct
stages. While this paper discusses them sequentially for the sake of simplicity, the pressures of real
life project development often force variations.

For instance, on a project with tight deadlines, some stages overlap in a pipeline. A partially
completed data analysis can be used to start developing examples, and early sets of examples can be
placed in a tentative order so that the writer can start creating the text.

Changes in design or marketing strategy also complicate the method by requiring the team to
reiterate completed stages. If a new feature is added, each of the documents produced in each stage
must be adjusted to include the feature. One of the method's strengths is that writers can quickly
determine the ripple effect of any change on the entire user viewpoint, and make incremental changes
to documentation where necessary.

Stage 1 : List and Categorize all Data Items Affecting the User

In the section on THEORY, I described the input and system state data to which product
designers should be alert, and showed how the use of the product is fully determined by this data.
The first stage of this paper's method categorizes data items, detennining the role that each plays
in the software system.

- , 2 9 -

Activities: For the purposes of user documentation, a few simple categories suffice to accom
modate all data items. These appear in Figure 1, along with rules for determining the proper
category for each item. Categorizations might not be intuitively obvious when the user operates at
a level far removed from the engineers (as in the case of interactive graphics products) but even
so, the same categories always apply. One must get used to looking at the object's role in the
state of the system, rather than looking at the superficial mechanisms for selecting or modifying
an object.

Category

Flag

Counter

Identifier

Table

Application data

Programming level Command level Menu level
A Boolean variable, An option that is An option that the
one that is per- either present or user chooses without
manently restricted to absent, with no entering any value,
having two possible accompanying value. choosing from a list,
settings. etc.

An integer (generally unsigned) that is incremented or decremented during
the course of the application, and is checked for reaching a threshold (often
zero).

A value (usually integer or string) that is assigned at most once, is never
changed thereafter, and is referred to in order to locate the object. This
category of data covers file descriptors, channel identifiers, and other objects
offered by the operating system.

An integer used as an An option accepting a A menu of options,
offset or array sub- fixed set of values, from which the user
script (assuming that usually represented as chooses exactly one.
the array is a set of character strings.
mappings or pointers,
rather than a vector
with arbitrary con-
tents).

Any item other than a counter that can take a range of values, with no
fixed, predefined set of possible values. Examples include file names and
the data entered into a spreadsheet.

Figure 1. How to Categorize Data Items.

- 1 30 -

Some people might want to use these categorizations as primitives from which to derive more
specific categories. For instance, a file identifier, a process identifier, and a channel identifier all
support different data transformations. Thus, if your product has many data items that fall such
sub-categories, you might find it efficient to create separate lists of questions for each sub
category.

Similarly, some data items cover more than one category. For instance, a communications proto
col might define several possible encodings for a single data item, where the settings of certain bits
determine which encoding applies. Many UNIX and X Window System applications use C-Ianguage
unions for similar purposes. Such complexities merely mean that you have to ask the appropriate
questions for each possible use of the data item.

Since the focus here is on the data's purpose, we do not need to be concerned with its type, scope,
or range. (These considerations do of course appear eventually in the documentation, to describe res
trictions and error conditions.) Nor are derived data types or levels of indirection important; we are
concerned only with the kinds of transformations allowed.

Once a category is found for each data item, we know the information that the documentation
must provide for that item. The list of questions for each category appears in Figure 2.

Rag

Counter

Identifier

Table

Application data

a. Default setting.

b. Who sets it, why, and how.

c. Who resets (clears) it, why, and how.

d. Who reads it, why, and how.

a. Who initializes it, why, and how.

b. Who increments or decrements it, why, and how.

c. Who reads it, why, and how.

a. What object it refers to.

b. Who initializes it, and how.

c. Who refers to it, and what operations are generally performed on
the object.

d. Whether it is ever deleted, and how.

What each entry in the table is for, and how to select it (at least
one example per mapping within the table).

a. What the default is, and why use it.

b. How a value is used.

c. Special considerations. These occur most often at the edges of the
range. For instance, zero or null often has a special meaning that
cannot be intuitively extrapolated from the normal range of values.

Figure 2. What Must be Documented for Each Data Item.

- 1 3 1 -

Result: Stage 1 achieves two major steps that are required to manage any activity. First, by
breaking down a documentation effort that up to now has been undifferentiated, this stage allows
the team to prioritize sub-tasks and assign them to different team members. Second, by providing
a complete list of sub-tasks, it provides an admittedly crude but still useful guide toward making
documentation's progress measurable.

The concrete result of Stage 1 is a list like Figure 3. This figure is excerpted from an actual inter
nal document developed during the design of a programming product for window graphics. The left
column is simply a list of functions, while the next column shows each function's argument list. If the
product included state data, these could be listed in the left column as well.

Call Argument! Categorization Expected range Examples
Data item

Init() return value table True (success)
False (failure), BadAccess

display identifier retrieved from server

ChangeScheduler() display identifier retrieved from server
client identifier from ThisClient()
when table Immediate

Sequential
params:

type table RoundRobin
PriorityBased

slicevalue counter > 0
slicetype table TimeBased

RequestBased
decaylevel counter MinPriority to MaxPriority
decayfreq counter > 0
decayunits table TimeBased

RequestBased
priority counter MinPriority to MaxPriority
priomode table Absolute

Relative

Figure 3. Sample Internal Document Generated by Stage 1 -' Window Product.

- 1 3 2 -

The argument to one call is a complicated structure containing several distinct data items. Fig
ure 3 reflects this by indenting the data items under the name of the structure, params.

Some data items now require more than one row, because multiple settings must be documented.
In particular:

• Flags require two rows.

• Counters and application data sometimes require extra rows for values with special meanings (such
as negative values or zero).

• Tables require one row for each legal value.

The Categorization column reflects the criteria from Figure 1. The Expected range column
resembles the domain and range information collected in standard Quality Assurance practices. In
general, the third and fourth columns embody the strategy for exploring the product and answer
ing the questions in Figure 2.

The rightmost column is currently empty, but will be filled in during Stage 2 with a list of exam
ples that illustrate each particular data item at each specified value.

As another example of Stage 1 output for more familiar software, Figure 4 shows the data categor
ization for the signal call on UNIX systems (as standardized in ANSI C).

Call Argument! Categorization Expected range
Data item

signal signo identifier
sa_handler table entry

return value table entry

mnemonic for signal
SIGJ)FL
SIG_IGN
function
SIGJ)FL
SIG_IGN
function
SIG ERR

Examples

Figure 4. Sample Internal Document Generated by Stage 1 - Signals.

Review: This stage produces a small amount of output, tied closely to the software design.
Reviewers should examine the output to ensure that:

1 . All function arguments and static data are listed, so long as these could have an effect on pro
duct use.

2. Each data item is correctly categorized.

- 1 3 3 -

Analogies within software engineering: In software engineering terms, the goal of this stage can
be compared to acceptance criteria.

Analogies in technical writing: In terms used by the technical writing literature, this stage meets
the goal of comprehensiveness.

Stage 2: Develop Examples

In Stage 1, the method delved deeply into the internal logic of the product. The result was a
history of changes to each data item. It is time now to return upward to the user's point of view.

Stage 2 builds the changes for each data item into small but realistic applications. This stage con
tains the alchemy that transforms system states into user tasks and programming models.

Activities: To some extent, examples emerge naturally from the answers to the questions in Fig
ure 2. For instance, in asking "What function assigns the identifier that appears as this argu
ment?" one discovers the kinds of initialization required in a sample application. While following
the lines of data transformation, one discovers functions that go together naturally. Eventually,
one or two rock-bottom examples emerge as the simplest possible applications that use the pro
duct to do something constructive.

The achievement of Stage 2 is to link product features to progressively higher layers of tasks. The
links collectively form a cross-reference system that the writer can tum into an index for a manual , or
a set of links in on-line documentation.

Example-building is a bounded activity, because the previous stages have already defined what
data items must be documented, and what questions the documentation must answer for each one.
The success of the documentation effort is now quantifiable. If time does not permit the full explora
tion of every data item, the engineering team can choose to focus on critical items and ignore obscure
ones.

Result: The language or medium for examples depends on the type of product being docu
mented. Functions and programming languages are illustrated by examples of code. Operating
systems and interactive utilities can be illustrated by series of prompts and commands. Point
and-click applications call for pictures or descriptions of the mouse and keyboard movements.

In the window project discussed earlier, the search for examples radically altered the document's
focus. No meaningful application could be developed that stayed within the scope of the product.
Instead, the team agreed to pull in numerous tasks that lay outside the software they were building,
but which were an inseparable part of the application base for the software:

• Control over the total windowing environment, which could contain any number of unrelated
applications.

• Communication and synchronization using the channels provided by the operating system.

• Responses to real-time input, of both periodic and urgent forms.

The initial document created for review during Stage 2 looked like the pseudo-code in Figure 5.
The final document was a set of actual programs. A subset of Figure 5 is represented by the C code
in Figure 6, which is an excerpt from an actual program testing features from the product. As with
software testing, a complete set of user examples should include some that are supposed to fail , by
deliberately causing errors or breaking the documented rules.

- 1 3 4 -

Basic exa
External event

Button press

ctienLid[O] = ThisOient(display)
params.type = PriorityBased
params_raise.type = PriorityBased
params.u.p.slicevalue = long....draw + 10
params_raise.u.p.sticevalue = long....draw + 10

CbangeScbeduler(display, ctienLjd[O], ¶ms, Sequential)

for (i=O; i<num_ctients; i++)
CbangeScbeduler(display, ctienLid[i] , ¶ms_raise, Immediate)

Figure 5. Sample Internal Document Generated by Stage 2.

- , 35 -

include "plot.....xl ib . h OI

include "root_defs . h OI

void Xserver-priori ty_ini tialize < top >
DISPLAY_INFO *top ;

rtxParms set.....rtxp ;

/* initial ize wi th privi leges to change global parameters * /
<void> Pr ivi legeInit < top->display> ;

/* c l ient-specific parameters wi l l affect j ust this c l ient -

actual ly, thi s fragment affects only global parameters */
top->cl ient = ThisCl ient < top->display> ;

/* this wi l l tel l l ibrary to check the set.....rtxp . u . p parameters */

set.....rtxp . type = Pr iori tyBased;

/* mask makes scheduler change s l ice and decay, but leave pr iori ty alone */
set.....rtxp . mask = Sl ice I DecayLevel I DecayAmount I DecayFrequency;

/* set the parameters of the rtxParms structure */
set.....rtxp . u. p . s l icevalue = NEW_SLICE;
set.....rtxp . u. p. dlevel = CEILING.....FORJ)ECAY;
set.....rtxp . u . p . damount = 1 ;

set.....rtxp . u . p . decayfreq = DECAY_TIME ;
set.....rtxp . u. p . s l icetype = TimeBased;
set.....rtxp . u. p . decayuni ts = TimeBased;

/* Everything before was prepartion -- this cal l makes the change */
ChangeScheduler < top->display, top->cl ient , &set.....rtxp , Sequential > ;

}

Figure 6. Function Excerpted from Sample Program Generated by Stage 2.

Review: Since this stage produces a great deal of output, it is often carried out incrementally.
The primary criteria are:

• Correct use of each function or command.

• Adherence to pre-requisites, with correct set-up and clean-up activities.

• Complete coverage of the usage models defined by senior project members and project managers.

• Correct delineation of tasks under each usage model .

- 1 3 6 -

------------- - - - --- - -

Some additional optional criteria can help to improve the quality of the final documentation or the
maintenance effort for examples. These criteria require intuitive judgement and a sense of the user
environment.

• Adherence to standard, recommended practices in areas outside the features of the product.

• Optimality. Each example should be smallest and simplest one that could illustrate the use of the
data, while still maintaining some naturalism.

• Usefulness. All other things being equal , it would be valuable to build sets of examples that
approach realistic applications. However, users and applications evolve unpredictably, so it is
much more important for examples to be simple and convey the basic use of the product.

• Machine independence. Regression testing is compromised if the example implicitly assumes a
certain underlying architecture, directory structure, or other external elements that are known to
change over time.

• Ease of testing. For instance, an example that generates data internally or uses pre-defined input
requires a lot less work during regression testing than one that interacts with a user for its input.

Analogies within software engineering: The goal of this stage can be compared to developing test
suites. In fact, the examples should be integrated into regression tests, as discussed in the
MECHANICS section of this paper. During product design, examples validate the documentation
effort by ensuring that it supports the necessary user applications and styles. The regression tests,
in tum, verify that the examples reflect product operation over the entire life of the product.

Analogies in technical writing: In technical writing terms, the decomposition of user tasks fulfills
the goals of usability and task orientation.

Stage 3: Order the Examples

This stage organizes the examples of Stage 2 into a structure that determines the order of
presentation in the final document. The structure has elements of both a simple linear ordering
and a tree hierarchy. The linear elements will be more evident in a printed manual, and the
hierarchical elements in on-line documentation.

Activities: Stage 3 continues the movement started in Stage 2, away from the structure of the
software and more toward the human user. The goals are to make it as easy as possible to get
started with a product, and then to identify and incorporate useful enhancements. Examples pro
vide natural criteria for ordering information in a linear fashion:

• Simple applications before complex ones. Start with the simplest possible example of product use,
and try to introduce only one or two new features in each successive example.

• Common features before obscure ones. Special options that fulfill rare needs can be isolated near
the back of the document.

The hierarchical aspects of organization come from the models and tasks discussed under Stage 2.
These help to group together the examples that users need at a particular time.

- 1 3 7 -

Result: The result of Stage 3 is a re-ordered set of examples organized under a hierarchy of
tasks. Since it represents the final structure of the manual, reviewers can examine the hierarchy to
decide whether features are presented in an appropriate order and given the right amount of atten
tion.

At the end of this stage, the engineering team has formally defined both the topics and the struc
ture of the product's documentation. The richness and authority of the information that this resource
offers to technical writers cannot be matched by any other method. Writers can now prepare back
ground information and narrative text that explains the models, tasks, and techniques. The cross
referencing system can be used to build the index.

As a brief example of a document structure designed through data analysis, here is the outline for
an on-line, fully task-oriented description of ANSI C and POSIX signals [ANSI, 1989; IEEE, 1988] .

Trapping
Basic signal call
POSIX signals (sigadion)

Definition
Flags
Errors

Forks (inheriting signal actions)
Handlers
Sending

kill call
Basic example
Processes/groups
Privilege
Errors

Interprocess communication
raise call
alarm call

Blocking
Signal set (manipulating the sigsetJ data type)
Data protection (sigprocmask call)
Handler protection (in sigadion call)
Pending signals (sigpending call, sigismember call)

Waiting for signal (sigsuspend call)

The document moves from simple issues to more complex ones, freely breaking up the discussion
of a single call where task-orientation calls for it. For instance, the section on "Sending" focuses on
communication with a single process (the most common case), but also offers a brief discussion of the
more complicated issue of process groups. Although blocking is a critical issue, it comes late in the
document because it requires a good understanding of the earlier issues. Many issues not directly
related to the calls also appear in the document, such as the need to pass information between the
handler and the main program using volatile, atomic data.

- 1 3 8 -

Review: The review of Stage 2, if carried out thoroughly, has resolved the most important
documentation questions. Reviewers should be able to accept at Stage 3 that the models, tasks,
and examples are the best available. Thus, the review at Stage 3 ascertains whether:

• The linear organization is best available, in terms of putting the simpler and more common appli
cations first .

• The hierarchical organization links all the layers of models, tasks, and features established in
Stage 2.

After this stage - when the materials are in the hands of the writers - the focus moves to
reviewing the text in relation to the examples. Document review becomes much easier and more
rewarding, because it can focus on small areas of the document and ask questions whose answers are
fairly easy to determine: for instance, whether the written procedures accurately summarize the exam
ples, and whether the text warns users about potential sources of error.

Analogies within software engineering: This stage does not have a real counterpart in software
engineering, because programs are generally not linear texts.

Analogies in technical writing: In technical writing terms, this stage meets the design goals of
structured documentation, by filtering and pacing information for easy learning and retrieval.

MECHANICS

This section shows some the tools and organizational structures that my colleagues and I have used
to integrate examples into regression tests. This part of the verification effort has offered the most
rewards in relation to invested time and resources.

A simple example is furnished by a book on the UNIX system's make utility. The data analysis
included all command options, in particular an - n option that causes the utility to print a series of
commands.

An interesting test for the - n option is a set of nested or recursive make commands. First,
create a file named makefile with specifications for make. The following is simplified but still realis
tic example.

al l :
$ (MAKE) enter testex

enter : parse. 0 f in<Ltoken. 0 global . 0
$ (CC) -0 $@ parse . 0 f in<Ltoken. 0 global . 0

testex : parse. 0 f ind_token. 0 global . 0 interact . 0
$ (CC) -0 $@ pars e . 0 f in<Ltoken. 0 global . 0 interact . 0

Interactively, one can test the - n option by entering the command:

make -n all

- , 3 9 -

which should produce output like:

make enter testex
cc -0 -c parse . c
cc -0 -c f ind....token . c
cc -0 -c global . c
cc -0 enter parse . 0 f ind....token. 0 global . 0
cc -0 -c interact . c
cc -0 testex parse. 0 f ind....token. 0 global . 0 interac t . 0

While some output lines vary from system to system, others are reasonably predictable. Thus, one
could begin automating the test by redirecting the output to a file, and then checking to see whether
one of the lines is correct:

make -n al l > Itmp/makeJLoption$$
grep ' cc -0 enter parse . 0 f ind....token. 0 global . 0 ' Itmp/makeJLoption$$

Finally, we can put the whole sequence into a regression test by running it as a shell script. Figure
7 shows the final result. For readers who are unfamiliar with shell scripts, I will simply say that the
following one is driven by an invisible exit status returned by each command.

rm -f * . 0 enter testex
if

make -n al l > Itmp/makeJLoption$$
then

if
grep ' cc -0 enter parse . 0 find....token. 0 global . 0 ' Itmp/makeJLoption$$

then
exi tstat=O

else

f i

echo ' make -n did not correctly echo commands from recurs ive make '
exitstat=l

else

fi

echo ' make -n exi ted wi th error : check accuracy of this test '
exitstat=2

rm -f Itmp/makeJLoption$$
exi t $exi tstat

Figure 7. Automated Test.

An interesting sidelight from this example is that it reveals incompatibilities among UNIX sys
tems. While the test uses entirely standard, documented features, some variants of 111Ilke have not
implemented them.

- 1 4 0 -

Figure 8 shows another style of test automation, through a short example from a section of a
FORTRAN manual on parallel processing. The manual includes marginal comments explaining the
procedure, which to fill an array in parallel through a loop.

REAL A, B, ARRAY (1 00) , TMPA, TMPB
C

PRINT * , ' Input two real s : '
READ (* , *) A , B

CPAR$ PARALLEL PDO NEW (TMPA , TMPB)
CPAR$ INITIAL SECTION

TMPA = A
TMPB = B

CPAR$ END INITIAL SECTION
DO 20 I = 1 , 100

ARRAY (I) = ARRAY (I) / (SIN (TMPA) *TMPB + COS (TMPB) *TMPA)

2 0 CONTINUE

Figure 8. Programming Example as it Appears in the Manual.

Figure 9 shows the example augmented by Quality Assurance staff to be self-testing. The fig
ure does not include the long header comments contained in the actual test, to describe the pur
pose of the example and include a simple shell script for running and verifying it. The
ARRAYVFY array has been added to store comparison data, and the EXITSTAT variable to indicate
whether errors have been found. A verification section at the end of the program simply performs
the same operation sequentially that the example performed in parallel, and checks the results.
Thus, this programming example is completely self-contained. However, the more familiar tech
nique of comparing output against a pre-existing file of correct answers is equally good, and was
used by Quality Assurance for some other examples in the same test suite.

- 1 4 1 -

REAL A, B , ARRAY (1 0 0) , TMPA, TMPB

REAL ARRAYVFY (100)

INTEGER EXITSTAT /0/

DO 10 I = 1 , 100

ARRAY (I) = I

ARRAYVFY (I) = I

10 CONTINUE

PRINT * , ' Input two reals : '

READ (* , *) A, B

CPAR$ PARALLEL PDO NEW (TMPA, TMPB)

CPAR$ INITIAL SECTION

TMPA = A

TMPB = B

CPAR$ END INITIAL SECTION

DO 20 I = 1 , 100

ARRAY (I) = ARRAY (l) / (SIN (TMPA) *TMPB + COS (TMPB) *TMPA)

20 CONTINUE

C

C - - - - - - VERIFY

C

DO 100 I = 1 , 100

ARRAYVFY (I) = ARRAYVFY (l) / (SIN (A) *B + COS (B) *A)

100 CONTINUE

DO 200 I = 1 , 100

IF (ARRAY (l) . NE. ARRAYVFY (I » THEN
PRINT * , ' Error in array on e lement I ' , I ,

& ARRAY (l) , ' <> " ARRAYVFY (I)

EXITSTAT = 1

END IF

200 CONTINUE

CALL EXIT (1)

END

Figure 9. Programming Example as it Appears in the Regression Test.

To integrate the test into our regression suites, a staff member simply added the source code,
and used existing test procedures to compile it, run the program, and check the exit status. I have
deliberately shown the primitiveness of our procedures - relying simply on shell scripts and
other standard UNIX system tools - to show how low the overhead of test development can be.
While the first few tests for each project took a while to create (about one person-hour per docu
mentation example) we soon become familiar with the procedure, and got to the point where we
could turn an example into a self-verifying test in about 10 minutes.

- 1 4 2 -

Naturally, test development would be easy with more advanced tools. Some of the areas for
further research include:

• Folding the documentation analysis in with the creation of the functional specification and the test
plan, in order to eliminate duplication of effort. Currently, the method described in this paper is
carries on completely separate from the other efforts, and any programs created by those efforts
require a great deal of adaptation before being suitable for documentation examples.

• Maintaining a single source of each example for both the regression test and the document. This
would require a tool that extracts and formats the portions of the example actually needed in the
document. The process is rife with difficulties, and might not be worth the effort. Almost any
change to an example requires a corresponding change to the narrative in the document - that is
the whole reason for the method in this paper. Therefore, it might be best to keep writers
involved and force changes to be transferred to the document manually.

• Automating the transformation from user example (such as Figure 8) to full regression test (Figure
9). Like most automation of software engineering tasks, this is a tricky area.

• Developing hooks in the systems being tested to permit further automation. In real-time program
ming, for instance, it is very hard to determine whether raising one's priority really results in get
ting more CPU time. Similarly, it is hard to test a graphics product without manually using the
mouse and personally observing the output. These are well-known problems in the computer
industry, and extend far beyond the area of user documentation.

• Developing rules that help the team predict areas of failure. This is another classic software
engineering dilemma. For instance, one cannot tell whether an example resulted in a corrupted
file unless the regression test checks that file.

• Formalizing the assignment of responsibilities. How much example development should be done
by software designers, by programmers, and by writers? At what point can these people turn a
crude example over to Quality Assurance and say "Now automate it"?

BENEFITS

The method presented in this paper has evolved through numerous projects in which I and my col
leagues applied software engineering techniques to user documentation:

• Functions and techniques for controlling window graphics (excerpts of which were used in the
METHOD section).

• Programming techniques with signals.

• Configuration and testing of OSI and local-area networks.

• Configuration, access control, and query techniques for databases.

• C libraries and FORmAN language statements that activate parallel processing.

• Real-time programming control over timing, scheduling, processor allocation, and file han
dling.

• Language debuggers and program-building utilities.

- 1 4 3 -

The project on signals was an on-line document, while the rest were hard-copy manuals. Most of
the projects involved complex programming tools, which might skew the method. But small experi
ments producing end-user documentation, as well as the considerations discussed in the THEORY sec
tion of this paper, suggest that the method can be successful for any audience and any computer
product.

Where verifiable documentation has replaced an earlier manual for the same product, comparisons
are revealing. The new documents have been generally agreed to display the following benefits:

• They have far more information, while being shorter than their predecessors.

• They expend a far greater amount of space on examples (often 50%), but the sparse narrative
information comes out more understandable and relevant.

• They find natural settings and useful applications for complicated features, which earlier docu
ments described in such a confusing and difficult manner that many readers could not make sense
of them at all .

The general method for producing verifiable documentation has now reached a fairly stable state,
and is well-enough defined to be transferable. As use of the method spreads, I hope to create a com
munity that can develop increasingly sophisticated tools to implement the stages of development, and
more research data by which the method can be evaluated. Meanwhile, our practical successes to
date, as well as the clear theoretical advance that this method represents over other documentation
methods, should make it attractive to software development teams.

- 1 4 4 -

ANSI, 1989.

ANSIIIEEE, 1986.

Boehm, 1981 .

Brown, 1986.

Frese, 1988.

IEEE, 1988.

Jones, 1980.

Norman, 1986.

Oram, 1989.

Oram, 1991 .

Probert, 1984.

References

ANSI, American National Standard for Information Systems - Programming
Language - C, X3.159-1989, ANSI, New York, NY, 1989.

ANSlIIEEE, IEEE Standard for Software Verification and Validation Plans, IEEE
Std. 1012-1986, IEEE, New York, NY, 1986.

Boehm, Barry W., Software Engineering Economics, Prentice-Hall, Englewood
Oiffs, NJ, 1981.

Brown, John Seely, "From Cognitive to Social Ergonomics and Beyond," in
User Centered System Design: New Perspectives on Human-Computer Interaction,
ed. Donald A. Norman and Stephen W. Draper, Lawrence Erlbaum Associ
ates, Hillsdale, N.J., 1986, pp. 453-486.

Frese, Michael , et aI . , "The effects of an active development of the mental
model in the training process: experimental results in a word processing sys
tem,'" Behavior and Information Technology, vol. 7, no. 3, 1988, pp. 295-304.

IEEE, Portable Operating System Interface for Computer Environments, IEEE
Std. 1003.1-1988, IEEE, New York, NY, 1988.

Jones, Cliff B . , Software Development: A Rigorous Approach, Prentice-Hall
International, London, England, 1980.

Norman, Donald A . , "Cognitive Engineering," in User Centered System
Design: New Perspectives on Human-Computer Interaction, op. cit. , pp. 31-61.

Oram, Andrew, and Kathleen A. Ferraro, "Sentence First, Verdict After
ward: Finding the Prerequisites for Good Computer Documentation,"
Proceedings of the ACM SIGDOC '89 Conference, ACM, New York, 1989.

Oram, Andrew, "The Hidden Effects of Computer Engineering on User
Documentation ," in Perspectives on Software Documentation: Inquiries and Inno
vations, ed. Thomas T. Barker, Baywood Press, Amityville, NY, 1991.

Probert, Robert L., and Hasan Ural, "High-Level Testing and Example
Directed Development of Software Specifications," Journal of Systems and
Software, vol. 4, pp. 317-325, 1984.

- 1 4 5 -

Roman, 1985.

Stoy, 1982.

Roman, Gruia-Catalin, "A Taxonomy of Current Issues in Requirements
Engineering," IEEE Computer, vol. 18, no. 4, April 1985, pp. 14-21.

Stoy, J. , "Data Types for State of the Art Program Development," in State of
the Art Report: Programming Technology (Series 10, no. 2), ed. P. J. L.
Wallis., Pergamon Infotech Ltd., Maidenhead, Berkshire, England, 1982,
pp. 303-320.

Acknowledgments

Among the writers and Quality Assurance staff who have worked on verifiable documentation
with me, I particularly want to thank Sara Alfaro-Franco, Kathie Mulkerin, John Morrison, Sharon
DeVoie, and Jean Sommer for using and evaluating the method. I am also grateful to
MASSCOMP, Concurrent Computer Corporation, and Hitachi Computer Products for supporting
the experiments and research effort toward verifiable documentation.

- 1 4 6 -

EXPERIENCE WITH THE COST OF DIFFERENT COVERAGE GOALS FOR TESTING

Brian Marick
Motorola, Inc.

In coverage-based testing, coverage conditions are generated from the program text. For example,
a branch generates two conditions: that it be taken in the false direction and in the true direction.
The proportion of coverage conditions a test suite exercises can be used as an estimate of its qual
ity. Some coverage conditions are impossible to exerise, and some are more cost-effectively elim
inated by static analysis. The remainder, the feasible coverage conditions, are the subject of this
paper.

What percentage of branch, loop, multi-condition, and weak mutation coverage can be expected
from thorough unit testing? Seven units from application programs were tested using an extension
of traditional black box testing. Nearly 100% feasible coverage was consistently achieved. Except
for weak mutation, the additional cost of reaching 100% feasible coverage required only a few per
cent of the total time. The high cost for weak mutation was due to the time spent identifying
impossible coverage conditions.

Because the incremental cost of �overage is low, it is reasonable to set a unit testing goal of 100%
for branch, loop, multi-condition, and a subset of weak mutation coverage. ' However, reaching
that goal after measuring coverage is less important than nearly reaching it with the initial black
box test suite. A low initial coverage signals a problem in the testing process.

BIOGRAPHICAL SKETCH

Brian Marick graduated from the University of Illinois in 1981 with a BA in English Literature
and a BS in Mathematics and Computer Science. Until 1989, he worked in product development
as a programmer, tester, and line manager, while attending graduate school as a hobby. The work
reported here was a result of a research project funded by a Motorola Partnerships in Research
grant through Motorola's Software Research Division. He is currently applying the techniques and
tools reported here to Motorola products, training others in their use, and planning further inves
tigations of cost-effective and predictable testing techniques.

Author's address: Motorola, 1101 E. University, Urbana, IL 61801.
Phone: (217) 384-8500
Email: marick@cs.uiuc.edu or marick@urbana.mcd.mot.com.

- 1 4 7 -

1. Introduetion

One strategy for testing large systems is to test the low-level components ("units") thoroughly
before combining them. The expected benefit is that failures will be found early, when they are
cheaper to diagnose and correct , and that the cost of later integration or system testing will be
reduced. One way of defining "thoroughly" is through coverage measures. This paper addresses
these questions:

(1) What types of coverage should be measured?

(2) How much coverage should be expected from black box unit testing?

(3) What should be done if it is not achieved?

This strategy is expensive; in the last section, I discuss ways of reducing its cost. A different stra
tegy is to test units less thoroughly, or not at ali, and put more effort into integration and system
testing. The results of this study have little relevance for that strategy, though they may provide
some evidence in favor of the first strategy.

Note on terminology: "unit" is often defined differently in different organizations. I define a unit to
be a single routine or a small group of closely related routines, such as a main routine and several
helper routines. Units are normally less than 100 lines of code.

1.1. Coverage

Coverage is measured by instrumenting a program to determine how thoroughly a test suite exer
cises it. There are two broad classes of coverage measures. Path-based coverage requires the exe
cution of particular components of the program, such as statements, branches, or complete paths.
Fault-based coverage requires that the test suite exercise the program in a way that would reveal
likely faults.

1.1.1. Path-based Coverage

Branch coverage requires every branch to be executed in both directions . For this code

if (arg > 0)
{
}

counter = 0; /* Reinitialize * /

branch coverage requires that the IF's test evaluate to both TRUE and FALSE.

Many kinds of faults may not be detected by branch coverage. Consider a test-at-the-top loop
that is intended to sum up the elements of an array:

sum = 0;
while (i > 0)
{

i -= 1 ;
sum = pointer [i] ; /* Should be += * /

}
This program will give the wrong answer for any array longer than one. This is an important
class of faults: those that are only revealed when loops are iterated more than once. Branch cov
erage does not force the detection of these faults, since it merely requires that the loop test be
TRUE at least once and FALSE at least once. It does not require that the loop ever be executed
more than once. Further, it doesn't require that the loop ever be skipped (that is, that i initially
be zero or less). Loop coverage [Howden78] [Beizer83] requires these two things.

1 4 8 -

Multi-condition coverage [Myers79] is an extension to branch coverage. In an expression like

if (A && B)
multi-condition coverage requires that A be TRUE in some test, A be FALSE in some test, B be
TRUE in some test, and B be FALSE in some test. Multi-condition coverage is stronger than
branch coverage; these two inputs

A == 1 , B == 1
A == O, B == 1

satisfy branch coverage, but do not satisfy multi-condition coverage.

There are other coverage measures, such as dataflow coverage [Rapps85] [Ntafos84] . They are not
measured in this experiment, so they are not discussed here.

1.1.2. Fault-based Coverage

In weak mutation coverage [Howden82] [Hamlet77] , we suppose that a program contains a particu
lar simple kind of fault. One such fault might be using <= instead of the correct < in an expres
sion like this:

if (A < = B)
Given this program, a weak mutation coverage system would produce a message like

"gcc.c", line 488: operator < = might be <

This message would be produced until the program was executed over a test case such that (A :S;B)
has a different value than (A <B). That is, we must satisfy a coverage condition that

(A :S;B)�(A <B)

or, equivalently, that

A =B

Notice the similarity of this requirement to the old testing advice: "always check boundary condi
tions".

Suppose we execute the program and satisfy this coverage condition. In this case, the incorrect
program (the one we're executing) will take the wrong branch. Our hope is that this incorrect
program state will persist until the output, at which point we'll see it and say "Bug!". Of course,
the effect might not persist. However, there's evidence [Marick90] [Offutt91] that over 90% of
such faults will be detected by weak mutation coverage. Of course, not all faults are such simple
deviations from the correct program; probably a small minority are [Marick90] . However, the
hope of weak mutation testing is that a test suite thorough enough to detect such simple faults
will also detect more complicated faults; this is called the coupling effect [DeMillo78] . The cou
pling effect has been shown to hold in some special cases [Offutt89] , but more experiments are
needed to confirm it in general.

There are two kinds of weak mutation coverage. Operator coverage is as already described - we
require test cases that distinguish operators from other operators. Operand coverage is similar -
for any operand, such as a variable, we assume that it ought to have been some other one. That
is, in

my Junction (A)

1 4 9 -

we require test cases that distinguish A from B (coverage condition A ,=B), A from C, A from D,
and so on. Since there may be a very large number of possible alternate variables, there are usu
ally a very large numb�r of coverage conditions to satisfy. The hope is that a relatively few test
cases will satisfy most of them.

1.2. Feasible Coverage Conditions

All coverage techniques, not just mutation coverage, generate coverage conditions to satisfy. (A
branch, for example, generates two conditions: one that the branch must be taken true, and one
that it must be taken false.) Ideally, one would like all coverage conditions to be satisfied: 100%
coverage. However, a condition may be impossible to satisfy. For example, consider this loop
header:

for(i = 0; i < 4; i++)

Two loop conditions cannot be satisfied: that the loop be taken zero times, and that the loop be
taken once.

Not all impossible conditions are this obvious. Programmer "sanity checks" also generate them:

phys = 10gicaLto-physical(10g);
if (NULLYDEV == phys)

fataLerror("Program error: no mapping.");

The programmer's assumption is that every logical device has, at this point, a physical device. If
it is correct, the branch can never be taken true. Showing the branch is impossible means
independently checking this assumption . . There's no infallible procedure for doing that.

In some cases, eliminating a coverage condition may not be worth the cost. Consider this code:

if (unlikely _error .J:ondition)
halt.J!ystemO;

Suppose that haltJlystem is known to work and that the unlikely error condition would be
tremendously difficult to generate. In this case, a convincing argument that
unlikely --.error �ondition indeed corresponds to the actual error condition would probably be
sufficient. Static analysis - a correctness argument based solely on the program text - is enough.
But suppose the code looked like this:

if (unlikely _error .J:ondition)
recoverJnd_continueO;

Error recovery is notoriously error-prone and often fails the simplest tests. Relying on static
analysis would usually not be justified, because such analysis is often incorrect - it makes the
same flawed implicit assumptions that the designer did.

Coverage conditions that are possible and worth testing are called feasible. Distinguishing these
from the others is potentially time-consuming and annoyingly impre�ise. A common shortcut is
to set goals of around 85% for branch coverage (see, for example, [Su91]) and consider the remain
ing 15% infeasible by assumption. It is better to examine each branch separately, even if against
less deterministic rules.

1.3. Coverage in Context

For the sake of efficiency, testing should be done so that many coverage conditions are satisfied
without the tester having to think about them. Since a single black box test can satisfy many

1 5 0 -

coverage conditions, it is most efficient to write and run black box tests first, then add new tests to
achieve coverage.

Test design is actually a two stage process, though the two are usually not described separately.
In the first stage, test conditions are created. A test condition is a requirement that at least one
test case must satisfy. Next, test cases are designed. The goal is to satisfy as many conditions
with as few test cases as possible [Myers79] . This is partly a matter of cost, since fewer test cases
will (usually) require less time, but more a matter of effectiveness: complex test cases are more
"challenging" to the program and are more likely to find faults through chance.

Mter black box tests are designed, written, and run, a coverage tool reports unsatisfied coverage
conditions. Those which are feasible are the test conditions used to generate new test cases, test
cases that improve the test suite. Our hope is that there will be few of them.

1.4. The Experiment

Production use of a branch coverage tool [Zang91] gave convincing evidence of the usefulness of
coverage. Another tool, GCT, was built to investigate other coverage measures. It was developed
at the same time as a variant black box testing technique. To tune the tool and technique before
putting them to routine use, they were used on arbitrarily selected code from readily available
programs. This early experience was somewhat surprising: high coverage was routinely achieved.
A more thorough study, with better record-keeping and a stricter definition of feasibility, was
started. Consistently high coverage was again seen, together with a low incremental cost for
achieving 100% feasible coverage, except for weak mutation coverage. These results suggest that
100% feasible coverage is a reasonable testing goal for unit testing. Further, the consistency sug
gests that coverage can be used as a "signal" in the industrial quality control sense [DeVor91] : as a
normally constant measure which, when it varies, indicates a potential problem in the testing pro
cess.

2. Materials and Methods

2.1. The Programs Tested

Seven units were tested. One was an entire application program. The others were routines or
pairs of routines chosen from larger programs in widespread use. They include GNU make, GNU
diff, and the RCS revision control system. All are written in C. They are representative of UNIX
application programs.

The code tested ranged in size from 30 to 272 lines of code, excluding comments, blank lines, and
lines containing only braces. The mean size was 83 lines. Size can also be measured by total
number of coverage conditions to be satisfied, which ranged from 176 to 923, mean 479. On aver
age, the different types of coverage made up these percentages of the total:

In the case of the application program, the manual page was used as a specification. In the other
cases, there were no specifications, so I wrote them from the code.

The specifications were written in a rigorous format as a list of preconditions (that describe allow
able inputs to the program) and postconditions (each of which describes a particular result and the
conditions under which it occurs). The format is partially derived from [Perry89] ; an example is
given in Appendix A.

1 5 1

2.2. The Test Procedure

The programs were tested in five stages. Each stage produced a new test suite that addressed the
shortcomings of its predecessors.

2.2.1. Applying a Variant Black Box Technique

The first two test suites were developed using a variant black box testing technique. It is less a new
technique than a codification of good practice. Its first stage follows these steps:

Black 11 Test conditions are methodically generated from the form of the specification. For
example, a precondition of the form ''X must be true" generates two test conditions: "X is true"
and ''X is false", regardless of what X actually is. These test conditions are further refined by pro
cessing connectives like AND and OR (using rules similar to cause-effect testing [Myers79]). For
example, "X AND Y" generates three test cases:

X is true, Y is true.
X is false, Y is true.
X is true, Y is false.

Black 2: Next, test conditions are generated from the content of the specification. Specifications
contain cliches [Rich90J. A search of a circular list is a typical cliche. Certain data types are also
used in a cliched way. For example, the UNIX pathname as a slash-separated string is implicit in
many specifications. Cliches are identified by looking at the nouns and verbs in the specification:
"search", "list", "pathname".

The implementations of these cliches often contain cliched faults.! For example:

(1) If the specification includes a search for an element of a circular list, one test condition is
that the list does not include the element. The expectation is that the search might go into
an infinite loop.

(2) If a function decomposes and reconstructs UNIX pathnames, one test condition is that it be
given a pathname of the form ''X/ /Y", because programmers often fail to remember that
two slashes are equivalent to one.

Because experienced testers know cliched faults, they use them when generating tests. However,
writing the cliches and faults down in a catalog reduces dependency on experience and memory.
Such a catalog has been written; sample entries are given in Appendix B.

Black 3: These test conditions are combined into test cases. A test case is a precise description of
particular input values and expected results.

The next stage is called broken box testing2• It exposes information that the specification hides
from the user, but that the tester needs to know. For example, a user needn't know that a routine
uses a hash table, but a tester would want to probe hash table collision handling. There are two
steps:

Broken 1: The code is scanned, looking for important operations and types that aren't visible in
the specification. Types are often recognized because of comments about the use of a variable. (A
variable's declaration does not contain all the information needed; an integer may be a count, a
range, a percentage, or an index, each of which produces different test conditions.) Cliched opera
tions are often distinct blocks of code separated by l;>lank lines or comments. Of course, the key

1 There's some empirical evidence for this: the Yale bug catalogues [JohnsonS3[, [SpohrerS5[are collections of such
cliched faults, but only those made by novice programmers. More compelling is the anecdotal evidence: talk to program
mers, describe cliched errors, and watch them nod their heads in recognition.

2 The name was coined by Johnny Zweig. This stage is similar to Howden's functional testing: see [HowdenSOa[.
[HowdenSObJ , or [HowdenS7J .

1 5 2 -

way you recognize a cliche is by having seen it often before. Once found, these cliches are then
treated exactly as if they had been found in the specification. No attempt is made to find and
satisfy coverage conditions. (The name indicates this: the box is broken open enough for us to see
gross features, but we don't look at detail.)

Broken 21 These new test conditions are combined into new test cases.

In production use, a tester presented with a specification and a finished program would omit step
Black3. Test conditions would be derived from both the specification and the code, then combined
together. This would minimize the size of the test suite. For this experiment, the two test suites
were kept separate, in order to see what the contribution of looking at the code would be. This
also simulates the more desirable case where the tests are designed before the code is written.
(Doing so reduces elapsed time, since tests can be written while the code is being written. Further,
the act of writing concrete tests often discovers errors in the specification, and it's best to discover
those early.)

In this experiment, the separation is artificial. I wrote the specifications for six of the programs,
laid them aside for a month, then wrote the test cases, hoping that willful forgetfulness would
make the black box testing less informed by the implementation.

2.2.2. Applying Coverage

Mter the black and broken box tests were run, three coverage test suites were written. At each
stage, cumulative coverage from the previous stages was measured, and a test suite that reached
100% feasible coverage on the next coverage goal was written and run. The first suite reached
100% feasible branch and loop coverage, the next 100% feasible multi-condition coverage, and the
last 100% feasible weak mutation coverage. The stages are in order of increasing difficulty. There
is no point in considering weak mutation coverage while there are still unexecuted branches, since
eliminating the branches will eliminate many weak mutation conditions without the tester having
to think about them.

In each stage, each coverage condition was first classified. This meant:

(1) For impossible conditions, an argument was made that the condition was indeed impossible.
This argument was not written down (which reduces the time required).

(2) Only weak mutation conditions could be considered not worthwhile. The rule (necessarily
imprecise) is given in the next section. In addition to the argument for infeasibility, an argu
ment was made that the code was correct as written. (This was always trivial.) The argu
ments were not written down.

(3) For feasible conditions, a test condition was written down. It described the coverage condi
tion in terms of the unit's input variables.

Mter all test conditions were collected, they were combined into test cases in the usual way.

2.2.2.1. Feasibility Rules

Weak mutation coverage conditions were never ruled out because of the difficulty of eliminating
them, but only when a convincing argument could be made that the required tests would have
very little chance of revealing faults. That is, the argument is that the coupling effect will not
hold for a condition. Here are three typical cases:

(1) Suppose array is an input array and array [O]=O is the first statement in the program. If
array [0] is initially always 0, GCT will complain that the initial and final value of the array
are never different. However, a different initial value could never have any effect on the pro
gram.

(2) In one program, fopenO always returned the same file pointer. Since the program doesn't
manipulate the file pointer, except to pass it to freadO and fcloseO, a different file pointer
would not detect a fault.

1 5 3 -

(3) A constant 0 is in a line of code executed by only one test case. In that test case, an earlier
loop leaves an index variable with the value o. GOT complains that the constant might be
replaced by the variable. That index variable is completely unused after the loop, it has
been left with other values in other tests, and the results of the loop do not affect the execu
tion of the statement in question. Writing a new test that also executes the statement, but
with a different value of the index variable, is probably useless.

2.2.2.2. Weak mutation eoverage

Weak mutation coverage tools can vary considerably in what they measure. GOT began with the
single-token transformations described in [Offutt88] and [Appelbe??] , eliminating those that are
not applicable to O. New transformations were added to handle C operators, structures, and
unions. Space does not permit a full enumeration, but the extensions are straightforward. See
[AgrawaI89] for another way of applying mutation to C.

Three extensions increased the cost of weak mutation coverage:

(1) In an expression like (variable < expression), GCT requires more than that
variable ,e alternate . It requires that variable <expre88ion ,e alternate < expreuion . This
weak sufficiency requirement guards against some cases where weak mutation would fail to
find a fault; see [Marick90] .

(2) Weak sufficiency also applies to compound operands. For example, when considering the
operator *ptr, GCT requires *ptr:;6 *other-ptr , not just ptr:;6other-ptr . (Note: [Howden82]
handles compound operands this way. It's mentioned here because it's not an obvious exten
sion from the transformations given in [Offutt88] , especially since it complicates the imple
mentation somewhat.)

(3) Variable operands are required to actually vary; they cannot remain constant.

See [AgrawaI89] for another way of applying mutation to C.

2.2.3. What was Measured

For each stage, the following was measured:

(1) The time spent designing tests. This included time spent finding test conditions, ruling out
infeasible coverage conditions, deciding that code not worth covering le.g., potential weak
mutation faults) was correct, and designing test cases from test conditions. The time spent
actually writing the tests was not measured, since it is dominated by extraneous factors.
(Can the program be tested from the command line, or does support code have to be writ
ten? Are the inputs easy to provide, like integers, or do they have to be built, like linked
lists?)

(2) The number of test conditions and test cases written down.

(3) The percent of coverage, of all types, achieved. This is the percent of total coverage condi
tions, not just feasible ones.

(4) The number of feasible, impossible, and not worthwhile coverage conditions.

2.2.4. An Example

LC is a 272-line 0 program that counts lines of code and comments in 0 programs. It contains
�23 coverage conditions.

The manpage was used as the starting specification; 101 test conditions were generated from it.
These test conditions could be satisfied by 36 test cases. Deriving the test conditions and designing

- 1 5 4 -

the test cases took 2.25 hours. Four faults were found.3

These coverages were achieved in black box testing:

Branch Loop Multi
Number satisfied 94 of 98 19 of 24 41 of 42
Percent 96% 79% 98%

Operator Operand
170 of 180 470 of 580

94% 81%

The next stage was broken box testing. In two hours, 13 more test conditions and 4 more test
cases were created. The increase is not large because the implementation of this program is rela
tively straightforward, with few hidden operations like hash table collision handling. No more
faults were found, and the following increases in coverage were seen:

Branch Loop Multi Operator Operand
Number newly satisfied 2 of 4 o of 5 1 of ! 2 of 10 7 of 110
Cumulative Percent 98% 79% 100% 96% 82%

In the next stage, the seven unsatisfied branch and loop conditions required only 15 minutes to
examine. Four were impossible to satisfy, two more were impossible to satisfy because of an
already-found fault, and one could be satisfied. The resulting test satisfied exactly and only its
coverage condition.

Because multi-condition coverage was 100% satisfied, 8 operator test conditions and 103 operand
test conditions remained to be satisfied. Of these, 107 were infeasible. 97 of these were impossible
(one of them because of a previously-discovered fault), and the remaining 10 were judged not
worth satisfying.

Seven new test conditions were written down. Two of these were expected to satisfy the remaining
four weak mutation conditions, and the rest were serendipitous. (That is, while examining the
code surrounding an unsatisfied condition, I discovered an under-tested aspect of the specification
and added tests for it, even though those tests were not necessary for coverage. This is not
uncommon; often these tests probe whether special-case code needs to be added to the program.
Note that [Glass81] reports that such omitted code is the most important class of fault in fielded
systems.)

These seven test conditions led to four test cases. One of the serendipitous test conditions
discovered a fault.

Satisfying weak mutation coverage required 3.25 hours, the vast majority of it devoted to ruling
out impossible cases.

3. Results

This section presents the uninterpreted data. Interpretations and conclusions are given in the next
section.

Measures of effort are given in this table. All measures are mean cumulative percentages; thus
weak mutation always measures 100%.

Black Broken Branch+Loop Multi Weak
Time 53 74 76 77 100
Test Conditions 79 93 95 95 100
Test Cases 74 89 92 92 100

I The program h as been in use ror some years without detecting these raults. All or them corresponded to error cases,
either mistakes in invocation or mishandling or syntactically incorrect C programs.

1 5 5 -

The next table reports on coverage achieved. Numbers give the percent of total coverage condi
tions eliminated by testing. An asterisk indicates that all coverage conditions of that type were
eliminated {either by testing or because. they were infeasible}. One number, the 100% for All
Path-Based Coverage in the Branch+Loop stage, has a different interpretation. It measures the
branches and loops eliminated either by testing or inspection, together with the multi-conditions
eliminated by testing alone. This was done because the number should indicate how much
remains to be done after the stage.

Black Broken Branch+Loop Multi Weak
Branch Coverage 95 99 * * *

All Path-based Coverage 92 95 100 * *

Weak Coverage 84 88 89 89 *

The time spent during the latter stages depends strongly on how many coverage conditions have to
be examined. Most were weak mutation conditions: 93% {std. dev. 3%}, compared to 5% (std.
dev. 3%) loop, 1% (std. dev. 2%) branch, and 0.1% (std. dev. 0.3%) multi-condition.

Because examining an impossible condition is of little use, it is useful to know what proportion of
time is spent doing that. This was not measured, but it can be approximated by the proportion of
examined conditions which were impossible.

Branch Loop Multi Weak
Percent Impossible 83 70 0 69
Percent Not Worth Testing 0 0 0 17
Feasible 17 30 100 14

The infeasible weak mutation conditions were the vast majority of the total infeasible conditions
(mean 94%, std. dev 5). Of these, 9% (std. dev. 8) were operator conditions, 44% (std. dev. 25)
were due solely to the requirement that variables vary, and other operand conditions were 47%
(std. dev. 19). The actual significance of the "variables vary" condition is less than the percentage
suggests; ruling them out was usually extremely easy.

In any process, consistency of performance is important. This table shows the standard deviations
for the first two stages. (The numbers in parentheses are the mean values, repeated for conveni
ence.) For example, during black box testing, 79% of the test conditions were written, with an
18% standard deviation. After broken box testing, the percentage increased to 93% and the stan
dard deviation decreased to 5%. Results for later stages are not given because the mean values are
very close to 100% and the variability naturally drops as percentages approach 100%. For the
same reason, the apparent decreases shown in this table may not be real. Because the stages are
not independent, there seems to be no statistical test that can be applied.

Black Broken
Time 19 (53) 141741
Test Conditions 18 (791 51931
Test Cases 111741 81891
Branch Coverage 6 (95) 3 (99)
All Path-based Coverage 7 (92) 2 (95)
Weak Coverage 1 1 (84) 41881

- , 5 6 -

The mean absolute time in minutes per line of code is given in this table. The values are cumula
tive from stage to stage.

Black Broken Branch+Loop Multi Weak
Minutes/LOC 2.4 2.8 2.9 2.9 3.6
Std. Deviation 1.4 1.4 1 .4 1.4 1 .4

4. Discussion

This section first interprets the results, then draws some conclusions about the use of coverage in
testing.

Measured by branch coverage alone, the first two stages attained high coverage: 95% for black,
99% for broken4• These numbers are higher than those reported in other studies of unit-sized pro
grams. [Vouk86] achieved 88% branch coverage with black-box testing of several implementa
tions of a single specification. [Lauterbach89] found 81% coverage for units selected from produc
tion software.

When all of the path-based coverage measures are considered together, the results are similar:
92% for black, 95% for broken. The additional cost to reach 100% on all of the path-based cov
erage measures was 3% of total time, 2% of total test conditions, and 3% of the total test cases.
(If testing had not included weak mutation coverage, the percentages would have been 4% of time,
3% of test conditions, and 4% of test cases.) Coverage testing raised the design cost from 2.8 to
2.9 minutes per line of code. Given that test writing time is proportional to test design time, and
that the fixed startup cost of testing is large, this extra expense is insignificant. This result is simi
lar to that of [Weyuker90] , who found that stricter dataHow criteria were not much more difficult
to satisfy than weaker ones, despite much larger theoretical worst-case bounds.

High path-based coverage is a reasonable expectation. The cost to reach 100% feasible coverage is
so low that it seems unwise to let a customer be the first person to exercise a branch direction, a
particular loop traversal, or a multi-condition.

The black and broken stages lead to a lower weak mutation coverage: 84% for black and 88% for
broken. [DeMill088] cites an earlier study where black box tests yielded 81% mutation coverage
for a single program.

Continuing to branch and loop coverage gained 1 %, leaving 11% of the weak mutation conditions.
This agrees with [Ntafos84] , who found that branch coverage (achieved via random testing) left on
average 8% uncovered mutation conditions. (A variant of dataHow testing left 4% uncovered con
ditions.) It does not agree so well with the study cited in [DeMillo88] . There, branch coverage of
a simple triangle classification program left 22% uncovered mutation conditions.6

Mter the multi-condition stage, satisfying the remaining weak mutation conditions is expensive:
8% more test cases and 5% more test conditions, but at the cost of 23% of the total time. The
large time is because most coverage conditions (93%) are weak mutation. The relatively low yield
is because most of the remaining weak mutation conditions are impossible (69%) or not worth
testing (17%). The time spent ruling -these out is wasted. GCT could be enhanced to do more of
this automatically, but considerable manual work is unavoidable. Further, weak mutation cover
age conditions are the hardest to eliminate; the effort is typically greater than, say, forcing a
branch to be taken in the TRUE direction. Thus, the cost of weak mutation testing is likely to
remain higher.

4 Recall again that I wrote the specifications. The black box numbers are less reliable than the broken box numbers.
Recall also that the percentages reported are of total conditions, not just the feasible ones.

6 Note that these two studies report on strong mutation coverage. However, empirical studies like IMarick901 and
IOffutt91j have found that strong mutation coverage is roughly equal to weak mutation coverage.

1 5 7 -

Of course, those remaining expensive tests might be quite cost effective. They might find many
faults. In the near future, GCT and this testing technique will be applied to programs during
development. These case studies will determine whether the extra effort of weak mutation cover
age is worthwhile by measuring how many faults are detected. In the meantime, weak mutation
coverage cannot be recommended.

There is one exception. Relational operator faults « for < = and the like) are common; indeed,
they are the motivation behind testing boundary conditions. As [Myers78] observes, testers often
think they are doing a better job testing boundary conditions than they actually are. The rela
tional operator subset of operator weak mutation coverage provides an objective check. Although
no records were kept for this subset, few of these conditions remained until the weak mutation
stage, and they were generally easy to satisfy. GCT is in the early stages of production use within
Motorola, and users are advised to follow the technique described here through branch, loop,
multi-condition, and relational operator coverage.

This advice may seem peculiar in one respect. General weak mutation testing is ruled out because
it does not seem useful enough for the effort expended. However, broken box testing gains less
than 5% coverage but costs 21% of the time, along with 15% of the test cases. It might seem that
broken box testing is not worthwhile, but recall how the variability in test conditions and coverage
conditions drops sharply from black to broken box testing. This may be an artifact of using per
centages. However, it is certainly plausible - broken box testing removes one source of variabil
ity, the proportion of internal cliches exposed in the specification. Further, most of the test condi
tions in broken box testing exist to discover faults of omission: to uncover missing code, rather
than to exercise present code. One must remember that coverage, while an important estimator of
test suite quality, does not tell the whole story. Like all metrics, it must be used with care, lest
the unmeasured aspects of quality be forgotten. The effective use of coverage will be discussed
later, after some other important issues are considered.

4.1. Potential Problems with this Study

The coverage in this study is generally higher than that foun'd in other studies. To what extent
are these results particular to this technique? Three factors might be important:

(1) The rigorous, stereotyped format of the specification makes it less likely that details needing
testing will be lost in the clutter. The same is true of the methodical procedure for deriving
test cases. Other formats and procedures should work as well.

(2) The catalog used in black and broken box testing is a collection of the test conditions an
expert tester might use, for the benefit of novices and experts with bad memories. It prob
ably contributes to high coverage, but the focus of the catalog is faults of omission - and
tests to detect omitted code have no effect on coverage.

(3) Broken box testing brings tester-relevant detail into the specification. It has an effect on
coverage (a 3-4% increase in the different cov'erage measures).

In short, this technique is a codification of existing practice, designed to make that practice more
consistent and easier to learn. Other methodical codifications should achieve comparable cOver
ages.

In isolation, this study is too small for firm conclusions. Not enough programs were tested, and
they were all tested by one person, who had written the specifications. However, the results are
consistent with other experience. In a later experiment, a classful of students applied an extension
of this technique to three programs. All the data. has not been analysed, but the same pattern
appears. The next study will apply the technique to a complete subsystem. It will be used to refine
the technique, to try to repeat these results, and to address two additional questions: how well do
the different stages detect faults? and what is the effect of differing definitions of feasibility?

1 5 8 -

4.2. The Effective Use of Coverage

100% feasible coverage appears to be a reasonable goal. How should it be achieved? When cover
age is first measured, there will be uncovered conditions. How are they to be handled?

The natural impulse is to add tests specifically designed to increase coverage. This approach, how
ever, is based on a logical fallacy. Because we believe that (1) a good test suite will achieve high
coverage, we are also asked to believe that (2) any test suite that achieves high coverage must be
good. Yet (1) does not imply (2). In particular, tests designed to satisfy coverage tend to miss
faults of missing code, since a tool cannot create coverage conditions for code that ought to be
there, but isn't. These are the very faults that [Glass81] found most important in fielded systems.

An unexercised coverage condition should be considered a signal pointing to an under-exercised
part of the specification. New test conditions should be derived from that part, not just from the
coverage condition that points to it. This may seem an unnecessarily thorough approach, but the
results of this study suggest that its cost is only a few percent of the total cost of test design. And,
as we saw in the LC example, such "unnecessary" test cases may be the ones that find faults, while
the test cases added for coverage do not.

A more important question is this: what is to be done if coverage is substantially lower than
100%?

If high coverage is not achieved, that's not just a signal to improve the test suite, it's also a signal
to improve the test proccu. Suppose the process leads to 60% branch coverage. The remaining
coverage conditions can still be used to produce a good test suite, so long as they are treated as
pointers into the specification. But it would have been better to produce this good test suite in the
first place:

(1) Tests added later are more expensive. Time must be spent understanding why a coverage
condition is unexercised.

(2) Tests sometimes discover problems with the specification. It is better to discover those prob
lems before the code is written.

(3) If coverage varies widely from program to program, the cost and duration of testing is less
predictable.

Low coverage should lead to a diagnosis of a process problem. Perhaps the test generation tech
nique needs to be improved, or the tester needs better training, or special difficulties in testing this
application area need to be addressed. A common problem is that the form or style of the
specification obscures or ignores special cases.

4.3. Testing Large Systems

The results of this paper apply only when test cases are derived from individual units. If this
same technique is �pplied to collections of units, or whole systems, the result will be lower cover
age. A subsystem or system specification will not contain enough detail to write high-yield test
cases.

However, testing each function in isolation is very expensive. In the worst case, special support
code ("test harnesses") will have to be written for every function. The cost of support code can
dominate the cost of unit testing.

A good compromise is to use subsystems as test harnesses. All routines in a subsystem are tested
together, using test conditions derived from their specifications, augmented by test conditions tar
geted to integration faults. Tests are then added, based on coverage data.

Disadvantages of this approach are:

(1) Extra design effort to discover how to force the subsystem to deliver particular values to the
function under test.

1 5 9 -

(2) Faults found by the tests will be more difficult to isolate.

(3) More coverage conditions will be impossible. For example, the subsystem might not allow
the exercising of a function's error cases. Faults in error handling might not be discovered
until this "tested" function is reused.

(4) Increased chance that a possible condition will be thought impossible.

Offsetting these is the advantage of not having to write harnesses for all of the functions. The use
of the subsystem as the single harness also makes the creation and control of a repeatable test
suite easier. This approach should usually be reasonable with subsystems of up to a few thousand
lines of code. Raw size is not as important as these factors:

(1) Clean boundaries between the subsystem and other subsystems. This reduces the cost of
building a harness for the subsystem.

(2) Some support for testing built into the subsystem. Relatively simple changes can often make
testing much easier. Because the changes are simple, they can often be retrofitted.

(3) A single developer responsible for the subsystem. This reduces the cost of test design and
sharply reduces the cost of diagnosis.

Once coverage has been achieved at the subsystem level, it need not be repeated at large-scale
integration testing or system testing. That testing should be targeted at particular risks, prefer
ably identified during system analysis and design. 100% coverage is not relevant.

This strategy, "unit-heavy", is probably not often done. Usually more effort is devoted to integra
tion and (especially) system testing. Sometimes unit testing is omitted entirely. Other times it is
done without building test harnesses or repeatable test suites, which essentially means omitting
unit testing during maintenance. The reason for this "unit-light" strategy is a risk/benefit tra
deoff: the extra cost of discovering faults later is expected to be less than the cost of more
thorough early testing.

What relevance has this paper to that strategy! The results do not apply. However, it may pro
vide more evidence that the unit-heavy strategy is reasonable:

(1) It provides a measurable stopping criterion, 100% feasible coverage, for testing. Testers
often suffer from not having concrete goals.

(2) The criterion is intuitively reasonable. It makes sense to exercise the branches, loops, and
multi-conditions, and to rule out off-by-one errors.

(3) As an objective measure, the criterion can be used to achieve more consistent and predictable
testing.

(4) The cost can be reduced by using subsystem harnesses, and can be greatly reduced if testing
is considered during design.

However, there is no hard data on which to base a choice. Further studies are being planned to
get a clearer idea of the relative costs and benefits of the two strategies (which, of course, form a
continuum rather than two distinct points). In the meantime, programmers, testers, and
managers can examine bug reports from the field and ask

(1) Would 100% coverage have forced the early detection of this fault?

(2) Would thorough black box tests have forced the detection of the fault? (A somewhat more
subjective measure.)

[Howden80aJ took this approach with 98 faults discovered after release of edition five of the IMSL
library. He found that black box testing would have found 20% of the faults, applying black box
techniques to internals would have found 18%, and branch coverage would have forced 13%.
(Some faults would be found by more than one technique.) There is danger in extrapolating these
numbers to other systems: they are for library routines, they depend on how the product was
tested before release, and they do not describe the severity of the faults. There is no substitute for

1 6 0 -

evaluating your own testing process on your own products.

Appendix AI An example specification

This is a part of the specification for the compare....fi.lesO routine in GNU diff. The actual
specification explains the context.

COMPARE...FILES(DIR!, FILE!, DIR2, FILE2, DEPTH)
All arguments are strings, except DEPTH, which is an integer.

PRECONDITIONS:
1. Assumed: At most one of FILE! and FILE2 is null.

2. Assumed: IT neither of FILE! and FILE2 is null
THEN they are string-equal.

[. . .]
4. Validated: if FILE! is non-NULL, then file DIR!/FILE! can be

[. . .]

opened for reading
On failure:

An error message is printed to standard error.
The return value is 2.

POSTCONDITIONS:
! IF FILE! and FILE2 are plain files that differ

THEN the output is a normal diff:

!el
< bar

> foo
and compare....fi.les returns 1 .

2. IT FILE! and FILE2 are identical plain files
THEN there is no output and the return value is O.

3. IF FILE! is a directory, but FILE2 is not
THEN

[. . .]

the output is "FILE! is a directory but FILE2 is not"
the return value is !.

Appendix BI Example of catalog entries

This appendix shows the catalog entries that apply to the examples given in the text.

28. GENERAL SEARCHING CO NDITIONS

• Match not found

- 1 6 1 -

• Match found (exactly one match in collection)
• More than one match in the collection
• Single match found in first position

(it's not the only element)
• Single match found in last position

(it's not the only element)

DEFER

DEFER

Note that these conditions apply whether the search is forward or
backward.

There is more detail to the technique than explained in this paper, aimed toward reducing the
amount of work; the DEFER keyword is part of that detail.

19. PATHNAMES

19.1. Decomposing Pathnames

There are many opportunities for errors when decomposing pathnamu into their component parts
and putting them back together again {Jor example, to add a new direc tory component, or to expand
wildcards}.

• <text>/
• < text> / <text>
• < text> / <text> / <text>
• < text> / / < text>

Also consider the directory and file components as Containers of
variable-sized contents.

REFERENCES

[AgrawaI89]
H. Agrawal, R. DeMillo, R. Hathaway, Wm. Hsu, Wynne Hsu, E. Krauser, R.J. Martin, A.
Mathur, and E. Spafford. Design of Mutant OperatorB for the C Programming Language.
Software Engineering Research Center report SERC-TR-41-P, Purdue University, 1989.

[Appelbe??]
W.F. Appelbe, R.A. DeMillo, D.S. Guindi, K.N. King, and W.M. McCracken, Using Muta
tion Analysis For Testing Ada Programs. Software Engineering Research Center report
SERC-TR-9-P, Purdue University.

[Beizer83]
Boris Beiler. Software Testing Techniques. New York: Van Nostrand Reinhold, 1983.

[DeMillo78]
R.A. Demillo, R.J. Lipton, and F.G. Sayward, "Hints on test data selection: help for the
practicing programmer". Computer. vol. 11 , no. 4, pp. 34-41, April, 1978.

[DeMillo88]
R.A. DeMillo and A.J. Offutt. "Experimental Results of Automatically Generated Adequate
Test Sets". Proceedings of the 6th Annual Pacific Northwest Software Quality Conference,

- 1 6 2 -

Portland, Oregon, September 1988.

[DeVor91]
R.E. DeVor, T.H. Chang, and J.W. Sutherland. Statistical Methods for Quality Design and
Control. New York: MacMillan, 1991 (in press).

[Glass81]
Robert L. Glass. "Persistent Software Errors". Transactions on Software Engineering, vol.
SE-7, No. 2, pp. 162-168, March, 1981.

[Hamlet77]
R.G. Hamlet. "Testing Programs with the aid of a compiler". IEEE Transactions on
Software Engineering, vol. SE-3, No. 4, pp. 279-289, 1977.

[Howden78]
W. E. Howden. "An Evaluation of the Effectiveness of Symbolic Testing". Software - Prac
tice and Experience, vol. 8, no. 4, pp. 381-398, July-August, 1978.

[Howden80a]
William Howden. "Applicability of Software Validation Techniques to Scientific Programs".
Transactions on Programming Languages and S1Jstems, vol. 2, No. 3, pp. 307-320, July,
1980.

[Howden80b]
W. E. Howden. "Functional Program Testing". IEEE Transactions on Software Engineer
ing, vol. SE-6, No. 2 , pp. 162-169, March, 1980.

[Howden82]
W. E. Howden. "Weak Mutation Testing and Completeness of Test Sets". IEEE Transac
tions on Software Engineering, vol. SE-8, No. 4, pp. 371-379, July, 1982.

[Howden87]
W.E. Howden. Functional Program Testing and Anal1Jsis. New York: McGraw-Hill, 1987.

[Johnson83]
W.L Johnson, E. Soloway, B. Cutler, and S.W. Draper. Bug Catalogue: 1. Yale University
Technical Report, October, 1983.

[Lauterbach89]
L. Lauterbach and W. Randall. "Experimental Evaluation of Six Test Techniques".
Proceedings of COMPASS 89, Washington, DC, June 1988, pp. 36-41.

[Marick90]
B. Marick. Two Experiments in Software Testing. Technical Report UIUCDCS-R-90-1644,
University of illinois, 1990. Portions are also to appear in Proceedings of the Fourth Sympo
siu.m on Software Testing, Anal1Jsis, and Verification.

[Myers78]
Glenford J. Myers. "A Controlled Experiment in Program Testing and Code
Walkthroughs/Inspections". Communications of the ACM, Vol. 21, No. 9, pp. 760-768, Sep
tember, 1978.

- 1 6 3 -

[Myers79]
Glenford J. Myers. The Art of Software Testing. New York: John Wiley and Sons, 1979.

[Ntafos84]
Simeon Ntafos. "An Evaluation of Required Element Testing Strategies". Proceedings of
the 7th International Conference on Software Engineering, pp. 250-256, IEEE Press, 1984.

[Offutt88]
A.J. Offutt. Automatic Test Data Generation. Ph.D. dissertation, Department of Informa
tion and Computer Science, Georgia Institute of Technology, 1988.

[Offutt89]
A.J. Offutt. "The Coupling Effect: Fact or Fiction". Proceedings of the A CM SIGSOFT 89
Third Symposium on Software Testing, Analysis, and Verification, in Software Engineering
Notes, Vol. 14, No. 8, December, 1989.

[Offutt91]
A.J. Offutt and S.D. Lee, How Strong is Weak Mutationf, Technical Report 91-105, Clemson
University Department of Computer Science, 1991. Also to appear in Proceedings of the
Fourth Symposium on Software Testing, Analysis, and Verification.

[Perry89]
Dewayne E. Perry. "The Inscape Environment". Proceedings of the 11th International
Conference on Software Engineering, pp. 2-12, IEEE Press, 1989.

[Rapps85]
Sandra Rapps and Elaine J. Weyuker. "Selecting Software Test Data Using Data Flow Infor
mation". Transactions on Software Engineering, vol. SE-ll, No. 4, pp. 367-375, April, 1985.

[Rich90]
C. Rich and R. Waters. The Programmer's Apprentice. New York: ACM Press, 1990.

[Spohrer85]
J.C. Spohrer, E. Pope, M. Lipman, W. Scak, S. Freiman, D. Littman, L. Johnson, E. Solo
way. Bug Catalogue: II, III, IV. Yale University Technical Report YALEU/CSD/RR#386,
May 1985.

[Su91]
Jason Su and Paul R. Ritter. "Experience in Testing the Motif Interface". IEEE Software,
March, 1991.

[Vouk86]
Mladen A. Vouk, David F. McAllister, and K.C. Tai. "An Experimental Evaluation of the
Effectiveness of Random Testing of Fault-Tolerant Software". In Proceedings of the
Workshop on Software Testing Conference, pp. 74-81, Banff, Canada, 1986.

[W eyuker90]
Elaine J. Weyuker. "The Cost of Data Flow Testing: An Empirical Study". Transactions on
Software Engineering, vol. SE-16, No. 2 , pp. 121-128, February, 1990.

[Zang91]
Xiaolin Zang and Dean Thompson. "Public-Domain Tool Makes Testing More Meaningful"
(review). IEEE Software, July, 1991.

- 1 6 4 -

O n the Relative Strengths of Data Flow and

Mutation Based Test Adequacy Criteria

Aditya P. Mathur

Software Engineering Research Center and Department of Computer Science
Purdue University

W. Lafayette, IN 47907

July 18 , 1991

Abstract

Data flow and mutation testing have existed for a long time as two powerful clear-box
testing techniques. Each technique provides a mechanism for measuring the adequacy of the
test data used for testing a program. There has been considerable ongoing debate in the testing
community regarding the "power" of the two techniques. Adequate theories of mutation and
data flow testing do not exist to prove that one method is more powerful than the other. We
are also not aware of any attempt in the past to compare the two techniques. We therefore
decided to compare them experimentally. Towards this end, we conducted experiments to find
which of these two adequacy criteria is the stronger one. This paper presents the experimental
methodology used , the empirical data obtained, and our conclusions based on statistical analysis
of this data. We also compare the cost of data flow and mutation using the number of test cases
to obtain 100% coverage as the cost measure. Data obtained from our experiments, conducted
on a set of 18 programs in which the number of decisions vary from 2 to 28, provide strong
evidence in favor of mutation.

Index Terms- Data flow testing, mutation testing, test adequacy criteria.

1 6 5 -

1 Introduction

A variety of clear-box testing techniques are available to a program tester. It is therefore natural to
ask the question: Which of these techniques is the best? This paper reports an empirical study that
was conducted to answer this question for data flow [6, 18] and mutation testing [8] . Even though
there has been an informal debate amongst researchers on the effectiveness of these two techniques,
there remains a lack of experimental studies providing a comparison. Budd's [4] dissertation does
provide data that tends to support the hypothesis that mutation testing is more powerful than data
flow testing. However, as discussed in Section 8 the evidence is indirect and inconclusive.

In the past, researchers have examined the effectiveness of various testing techniques [4, 7,
1 1] . However, to our knowledge a formal comparison of data flow and mutation has not been
attempted, perhaps due to a lack of automated tools that support these two techniques. Recently
the availability of Mothra [5] and ASSET [15] has made it possible to experiment with mutation
and data flow.

The remainder of this paper is organized as follows. Section 2 presents an overview of data flow
and mutation techniques. The hypothesis tested to conclude which of the two criteria is stronger is
formulated in Section 3. Section 4 outlines the experimental methodology used in our study. Data
obtained from the experiments appear in Section 5. Analysis of the data appears in Section 6.
Possible pitfalls of our experimental methodology and attempts to avoid them are described in
Section 7 We conclude with some remarks on our study and other planned studies in Section 8. An
appendix summarizes the terminology used in this paper.

2 An Overview of Data Flow and Mutation Testing

We present a brief overview of data flow and mutation testing. Clarke et al. [6] and DeMillo
et al. [8] provide a detailed description of these two techniques. In our discussion below, P denotes
the program under test, T a set of zero or more test cases on which P is executed during testing,
and t an element of T. We add subscripts and superscripts to P and T to indicate a specific
program or test set. I T I denotes number of test cases in T. V denotes the set of all possible
subsets of test cases that are in the input domain of P. For example, if P is the program to find
the GCD of two integers, then V is the set of all subsets of pairs of integers where each integer is
in the range accepted by the machine on which P is being tested.

Data flow and mutation testing are used for determining the adequacy of T. P(t) denotes the
output obtained by executing P on t. We also assume that for each test case t E T, P(t) is correct.
Thus there exists an oracle that can determine if P(t) is correct or not w.r.t. the specifications
from which P is derived.

2 .1 Data flow testing

For definitions of ALL-DU paths we follow Clarke et al. [6] . A statement in P that can assign
a value to a variable x is considered a definition of x . We denote such a statement by Sd' For
example, an assignment or an input statement can define a variable. The appearance of x in an
expression within a statement is considered a use of x . We denote such a statement by S�. A use of
variable x in an expression that occurs in a conditional branch statement, is said to be a p-use of x ,
otherwise i t is called a c-use. Let Px denote a path from Sd to some statement in the program that
can be executed immediately after S� and that there is no definition of x along this path except
at Sr Px is known as a DU-path. If there is a loop along Px, then it is sufficient to consider only
zero or a single traversal of the loop. Notice that each traversal of the loop results in a unique Px'

- 1 6 6 -

T is said to satisfy the ALL-DU paths criteria if the execution of P on all elements of T causes
each Px for every variable x in P to be traversed at least once. There are several other data flow
criteria proposed in [6, 14]. However, it has been shown in [6] that the ALL-DU paths criteria
subsumes all other criteria. Thus in this paper we consider only the ALL-DU paths criteria. Note
that the ALL-paths criteria subsumes the ALL-DU paths criteria [6]. However, testing for all paths
is impractical for anything but small programs due to an arbitrarily large number paths generated
by the presence of loops in P.

A path Px is considered feasible if there exists at least one test case t such that executing P
on t forces the traversal of Px. Tools such as ASSET and ATAC [10] find various paths Px in a
program by constructing some form of a flow graph of P. The flow graph can be used to compute
all Px for each variable x. However, not every Px may be feasible. This leads to a modification of
our definition of the ALL-DU paths criteria. We say that a test set T weakly satisfies the ALL-DU
paths criteria if the execution of P on all elements of T causes each of the feasible paths Px to
be traversed at least once [18]. We denote the total number of feasible DU -paths in a program by
1 DU I ·
Definition 1 A test set is considered adequate w. r. t. data flow testing if it weakly satisfies the
ALL-D U paths criteria. Such a test set is denoted by Td. The ratio of the number of D U-paths
covered to the total number of feasible D U-paths is the data flow score of a test set T w. r. t. the
progrnm under test. We refer to this score as FT.!

2.2 Mutation testing

Mutation testing, also referred to as mutation analysis, is a fault based technique. It provides a set
o of operators, also known as mutant operators, that model one or more of the faults in a set F of
faults . For example, the use of an incorrect variable in an expression is a fault. Mutant operator
svr in Table 1 models this fault. There is no uniqueness to 0 and F. In our experiments we used
the set of mutant operators available in Mothra and listed in Table 1 . More details regarding the
design of 0 and the determination of F may be found in [1] .

A mutant operator is applied to the program P under test. Such an application transforms
P into a similar, though a different, program known as a mutant. One application of a mutant
operator may generate zero or more mutants. If P contains several entities that are in the domain
of a mutant operator, then the operator is applied to each such entity, one at a time. Each
application generates a distinct mutant. As an example, consider the mutant operator sdl that
deletes a statement from P. All statements in P are in the domain of this operator. When applied,
sdl generates as many mutants as there are statements in P. Each mutant will be identical to P
except that it does not contain the single deleted statement. Such mutants can be considered as
the fault induced versions of P.

Certain mutants are instrumented versions of P. Almost any testing tool that measures coverage,
such as special value coverage or statement coverage, would also generate such "mutants" which are
essentially instrumented versions, or more likely one instrumented version, of the program under
test. To be consistent in its naming convention, the mutation tool that we use, namely Mothra,
calls these instrumented versions as mutants .

The instrumentation is designed to reveal some kind of coverage. For example, a mutant
operator that provides special value coverage for variables generates one mutant for each occurrence
of a scalar reference. When executed this mutant informs the tester whether or not the desired

l We use symbols F and U while referring to data Flow and mUtation scores to avoid conflicts with symbols AI
and D that are used in other context.

- 1 6 7 -

Table 1 : Mutant operators used by Mothra.

o� Meaning Examplet
aar array reference for array reference replacement A(I)=B(J)+3 -+ A(I)=A(I)+3
abs special value coverage P= X*Y+ l -+ P=zpush(X)*Y+ l
acr array reference for constant replacement FOUND=O -+ FOUN D=A(I)
aor arithmetic operator replacement A=B+C -+ A=B-C
asr array reference for scalar variable replacement P=X * A(I) -+ P=X* A(A(I))
car constant for array reference replacement P=X * A(I) -+ P=X * 0
cm comparable array name replacement A(I)=B(J)+3 -+ A(I)=A(J) +3
crp constant replacement do 10 1= 1 , N -+ do 1 0 1= 1 , N , 2
csr constant for scalar replacement P=X * A(I) -+ P=X * A(I)
der DO statement end replacement do 10 1= 1 , N-+ ONETRIP 10 1= 1 , N
dsa data statement alterations DATA X/Of -+ DATA X/l/
glr goto label replacement goto 20 -+ goto 10
lcr logical connector replacement X .AND. Y -+ X .OR. Y
ror relational operator replacement X .EQ. A(I) -+ X .GE. A(I)
rsr return statement replacement P = X * A(I) -+ RETURN
san statement analysis Each statement replaced by TRAP.
sar scalar variable for array reference replacement P=X * A(I) -+ P=X * Y
scr scalar for constant replacement P = 0 -+ P = X
sdl statement deletion Each statement is deleted.

svr+ scalar variable replacement P = X * A(I) -+ P = Y * A(I)
uoi unary operator insertion P=Q+R -+ P=Q+R+ l

� A mutant operator is usually referred to by this mnemonic .

t x -+ y means that string x in P is replaced by string y to obtain a mutant. zpush(x) returns
x if x =1= 0 else it terminates program execution. TRAP causes program termination. ONETRIP
terminates program execution after one execution of the do loop body.

+ Any variable or constant replacement is carried out w.r.t. variable names and constants already used
in the program. For example, the svr mutant operator will replace a variable name X by another
name Y only if Y occurs somewhere in the program being mutated.

- 1 6 8 -

special value (e.g. 0) was attained by the variable in a specific context , e.g. , within an expression
in a statement.

Once generated, a mutant M is executed against elements of T. For a fault induced mutant,
for any t E T, if the output of M differs from that of P, we say that M is killed. An instrumented
mutant is killed when a trap function, such as zpush or onetrip, inserted into P by the mutant
operator, terminates mutant execution.2 A mutant not killed by any t E T is considered to be live.
A live mutant M implies that either (a) T needs to be augmented with additional test cases that
can kill M or (b) M is equivalent to P. A mutant M is considered equivalent to P if for all test
cases in the input domain of P, the outputs of M and P are identical. Formally, M is equivalent
to P if "IT E V, "It E T, P(t) = M(t).

Definition 2 A test set is considered adequate w. r. t. mutation testing criteria if it kills all non
equivalent mutants of P. Such a test set is denoted by Tm . The ratio of the number of mutants
killed to the number of non-equivalent mutants generated is the mutation score of a test set T
w. r. t. to P . We shall refer to this score as UT .

A tool based on mutation analysis, such as Mothra [5] , automates several of the tasks implicit in
the above description. For example, Mothra performs the tasks associated with mutant generation,
mutant execution, live/kill analysis , test case management, and automatic test case generation.

3 Formalizing the "Strength" of an Adequacy C riteria

The primary goal of our experiment was to compare the data flow and mutation test adequacy
criteria defined above. To be able to perform such a comparison, we begin by formalizing the
meaning of "stronger adequacy criteria" . Let TA denote the test data that satisfies test adequacy
criteria A. Let BTA denote the score computed using criteria B by executing P on TA . Thus, for
example, if B denotes the mutation testing criteria and A the data flow criteria then BTA denotes
the mutation score obtained by executing P on data flow adequate test set. We use F and U to
denote, respectively, the data flow and mutation criteria. The following definition characterizes an
ideal comparison.

Definition 3 Given two test adequacy criteria A and B, we say that A is stronger than B if for
every program P and "IT E V, BTA > ATB .

The above definition is at best impractical. To be able to compare mutation and data flow using
the above definition, we need a sound theory of mutation which does not exist at present. One way
to obtain a practical definition is to use the mean scores obtained by conducting an experiment on
finite size sample of programs. Further, for non-trivial programs, it may be impossible to obtain
all possible adequate test sets as implied by the above definition. Hence we restrict ourselves to
one adequate test set for one program and one adequacy criteria. We then use non-parametric
statistical tests to conclude about about the entire population of programs and tests. Towards this
end , let ETA (ATB) denote the mean score obtained using criteria B (A) by executing a set of
programs on data that is found adequate w.r.t. criterion A (B) . We now formulate the following
null and alternate hypotheses for criteria A and B:

2When executed, a trap function merely indicates whether some condition is true or not. Such an indication is
used to determine if a coverage criterion has been satisfied. For example, when the function zpush(x+y) is executed
and the condition x + y = 0 is true then the special value coverage criterion, that the expression attain the value 0,
is satisfied for the expression x + y .

- 1 6 9 -

------------- - ----

Ho : ETA = ATB
HI : ETA > ATB

(1)

(2)

We use the following definition of statistically stronger criteria which can be used in practice.

Definition 4 Given two test adequacy criteria A and B, we say that A is statistically stronger
than B if the null hypothesis as stated above can be rejected.

The above definition assumes that statistically sound experiments are conducted to test Ho. In
the remainder of this paper we use the above definition of statistically stronger criteria to compare
data flow and mutation. Below, we loosely refer to "statistically stronger" simply as "stronger" .

4 Experimental Methodology

Our experiments were designed to test if Ho could be rejected when A is the mutation criteria and
B is the ALL-DU paths criteria. We conducted two independent sets of experiments referred to as
SET-I and SET-II. Each set provided data to test the null hypothesis. Further, data from each set
also served as a check against data from the other.
Group composition: Each of the two sets of experiments was conducted by one group of graduate
students3• The groups that conducted SET-I and SET-II consisted of 3 and 4, members respectively.
Group formation was voluntary on the part of students. An arbitrary limit of 4 was placed on the
size of each group.
Progmm selection: Each group selected a set of programs to work with. We must confess that the
choice of programs was arbitrary to some extent. However, it was guided by the following factors:

1 . For each program selected, two versions were required. One was a Pascal version for use with
ASSET and the other a Fortran version for use with Mothra. As we did not have any such
programs readily available, we selected some Fortran (Pascal) programs and translated them
to Pascal (Fortran) .

2. We needed a "large enough" sample of mutation and data flow scores for each program to be
able to test the null hypothesis.

3. Mutation and data flow scores of 1 had to be obtained for each program selected. The expense
associated with this task depends, largely, on the number of DU-paths and the number of
mutants generated for each program.

The above factors led to the selection of 14 programs for SET-I and 9 for SET-II. 5 of the 14
programs were common to both sets. We do not see any reason that this commonality will affect
the validity of our conclusions in any way. Of the 18 distinct programs selected, 8 were originally
in Pascal and the remaining 10 in Fortran. The set of Pascal programs we used is a subset of
the programs used by Weyuker in an empirical study [18] . 8 of the Fortran programs were from
a test suite that has been used by Offutt [13] and 2 were ACM algorithms #201 (shellsort) and
#202 (perle). All Pascal programs were taken from [12]. In all, 4 programs were in the area of
string manipulation, 1 in numerical computing, 3 in sorting/searching, and the remaining in other
categories .
Experiments: Each group performed the experiments as shown in Figure 1 . Following is a descrip
tion of each step shown in Figure 1 .

3The entire project was a part of a graduate Software Engineering course. However, some seniors in the course
also participated in the experiments reported.

- 1 7 0 -

P (Pascal)

p

Prepare Fortnln/P3scaI
versions

P (Fortran)

Conclusions

Figure 1 : Generating data to compare the strengths of data flow and mutation adequacy criteria.

1. Program preparation: Each group began by preparing a Fortran and a Pascal version of each
program. Preparation involved rewriting the program and testing it to make sure that both
the Fortran and Pascal versions provided identical results. Only functional testing was used
in this step.

2. Test data generation: For each program test set Td was constructed using ASSET. Another
test set Tm was constructed using Mothra. Note that ASSET or Mothra help in determining
the data flow or mutation score of a test set . This score, and the information on what is
not covered or which mutants are sti11 live, helps the tester in constructing a new test case.
This test case is constructed with the aim of improving the coverage or killing one or more
mutants. If the test case succeeds in doing so, it is added to the existing test set, otherwise
it is ignored and another test case constructed.

3. Cross scoring: Mothra was used to compute the mutation score UTd for each program.
Similarly ASSET was used to compute the data flow score FTm for each program. We shall
refer to these scores as cross scores.

The generation of Td for a program P began by starting with an arbitrary test case tl and
measuring the DU-path coverage of P. The paths that were not covered by tl were examined and
another test case constructed to cover more paths. This process was continued until the desired
score was obtained. This process obviously required the determination of whether a path is indeed
feasible or not4•

4 Instructions were given to the experimenters to try their best to "prove" that indeed a path was infeasible.
However, there was no independent check of such "proofs" . The same is true for the determination of equivalent

- 1 7 1 -

Table 2: Some statistics on programs used in the experimentation.

Program 1 DU 1 1 M 1 D E
archive 12 547 10
bubble 35 330 3
case 6 1 13 4
entab 33 775 5
expand 10 643 6
find 72 983 7
gauss 185 3618 20
gauss-main 15 147 3
getfns 43 1300 6
gtext 25 467 5
makepat 134 3899 19
max 19 120 2
omatch 93 1997 28
pattern 22 394 5
perle 60 933 8
shellsort 27 549 4
triangle 135 951 1 7
unrotate 43 2561 7
averages 1 62 1 887 1 7.33

The generation of Tm also began with an arbitrary test case tt and measuring its mutation score
on P. Mutants not killed by tt were examined individually and additional test cases generated to
kill any remaining mutants. The generation process terminated when the only live mutants were
the ones equivalent to P.

Cross scoring was relatively easy. It involved executing program P on each element of Td using
Mothra to obtain UTd and also executing it on each element of Tm to obtain FTm using ASSET.
Data collected during these experiments was then subjected to statistical analysis .

5 Experimental Results

In this section, we present the data collected from the experiments described above. For each
program used by the two groups, Table 2 lists the total number of DU-paths , denoted by 1 D U I ,
number of mutants generated by applying all the operators listed in Table 1 , denoted by 1 M I ,
and the number of conditions i n the program, denoted b y DE. Each DO or for statement was
counted as one condition. Each simple condition inside a compound condition was counted as one
condition. For example, the compound condition a < b " c > d contains two simple conditions
a < b and c > d.

From Table 2 we note that gauss generates the largest number of DU-paths (185) and makepat
generates the largest number of mutants (3899) . The smallest number of DU-paths is in case (6).
The smallest number of mutants (1 13) is also generated from case. Program max contains the

mutants. However, data generated by the two independent groups was checked for any major inconsistencies such as
the differences between the number of test cases generated for the programs common to the two sets.

- 1 7 2 -

Table 3: Results of experimental SET-I.

Program I Tm I FTm I Td I UTd
archive 1 1 1 7 0.89
case 6 1 4 0.96
entab 5 1 9 0.95
expand 1 1 1 4 0.95
find 9 0.94 9 0.94
gauss-main 6 1 6 0.93
getfns* 10 0.88 5 0.98
gtext* 6 0.90 3 0.96
makepat 30 0.96 19 0.94
max 9 1 9 1
omatch 40 1 19 0.92
pattern 8 1 3 0.88
triangle 53 1 10 0.8
unrotate 8 0.92 6 0.9
averages 11 15 .1 I 0.97 " 8.0 I 0.93
* For these programs, FTm - U Td < O. See
text in Section 6 .1

smallest number of conditions (2) and gauss the largest (20). Notice that the variability in the
number of DU paths, mutants and decisions is an order of magnitude.

Tables 3 and 4 contain the results of SET-I and SET-II, respectively.

6 Analysis of Experimental Data

In this section we first examine the data presented in the previous section. Then we present the
results of some statistical procedures applied to this data. We use statistical procedures to compare
the strengths of the data flow and mutation criteria and also to compare the costs of these two

Table 4: Results of experimental SET-II.

Program I Tm I FTm I Td I Urd
bubble 1 1 1 4 0.87
case 6 1 4 0.98
find 21 0.96 10 0.93
gauss 27 0.99 9 0.90
max 8 1 5 0.93
pattern 15 1 2 0.92
perle 17 1 7 0.95
shellsort 4 0.92 4 0.86
triangle 39 1 10 0.81
averages II 16.4 I 0.98 " 6. 1 I 0.9

- 1 7 3 -

criteria as defined by Weyuker [18].
From Tables 3 and Table 4 we notice that data flow scores obtained using mutation adequate

data and mutation scores obtained using data flow adequate data are consistently above or at 0.8.
However, to compare the two, let us examine the data in more detail. From Table 3 we find that for
9 out of 14 programs (64%) studied we could obtain a perfect data flow score of 1 using mutation
adequate test data. On the contrary we could obtain a mutation score of 1 using data flow adequate
test data for only 1 out of 14 programs (7%). From Table 4 we notice that for 6 out of 9 programs
(66%) we could obtain a perfect data flow score of 1 using mutation adequate test data. We could
not obtain a mutation score of 1 for any program using data flow adequate test data. We also
note that in SET-I there are only 2 programs, getfns and gtext, for which the data flow score from
mutation adequate data was lower than the mutation score from data flow adequate data. No such
case was encountered in SET-II.

From the above simple analysis it appears that indeed mutation is a stronger adequacy criteria
than data flow because data flow score from mutation adequate data is, in most cases, higher than
the mutation score from data flow adequate data. However, we wanted to know if the difference
in the means of the two samples corresponding to FTm and U Td are statistically different. Both
the Chi-square test and the Kolmogorov-Smirnov tests failed on the two samples to show that the
samples are from a normal distribution. We therefore decided to use non-parametric methods [3]
to test for the null hypothesis stated in (1).

6.1 Testing the null hypothesis

Notice that for each program the scores FTm and U d can be treated as a pair. In SET-I and
SET-II, we have 1 4 and 9 such pairs , respectively. We therefore decided to use the sign test and
the Wilcoxon signed-rank test to test the stated hypothesis.

To apply the sign test, let S denote the number of differences with positive signs. From Table 3
we find that 12 out of a total of 14 differences (FTm - UTd) are positive. From the binomial
tableS we find that Pr[S Z 10] = 0.029. This implies that the null hypothesis can be rejected at
a significance level (a) of 0 .029. From the same table we also find that Pr[S Z 1 1] = 0 .006. This
implies that the null hypothesis can also be rejected at a = 0 .006. For SET-II we obtain S = 9 .
Thus, in this case the null hypothesis can be rejected at any significance level.

To apply the Wilcoxon signed-rank test we computed the W+ statistic to be 85 and 45 for
SET-I and SET-II, respectively. Using the tail probabilities for the null distribution of Wilcoxon's
signed-rank statistic we find that Pr [W+ Z 84] = 0 .029. This implies that the null hypothesis can
be rejected at a = 0.029. For SET-II, we find Pr[W+ Z 42] = .01 . This implies that the null
hypothesis can be rejected at a = .01 .

From the above analysis we find that the null hypothesis is rejected i n all cases if we set a = 0.05.
If we set a = 0.01 then the sign test results in the rejection of the null hypothesis for both cases
and the singed-rank test rejects the null hypothesis only for SET-II.

6.2 Cost of the two criteria

In [18], Weyuker reported experiments revealing that the cost of the data flow criteria as measured
in terms of the number of test cases, is linear in the number of decisions in the program. No
such results are available for mutation. Using our experimental data we computed the relationship
between the size of mutation adequate data, 1 Tm I , and the number of decisions in the program

5 All statistical methods and tables used are from [3].

- 1 7 4 -

under test, DE. We used linear regression to compute the parameters bo and b1 in the following
two equations:

b1 * DE + bo
b1 * DE + bo

(3)

(4)

Equation (4) was used for comparison with Weyuker's results. Table 5 lists the values of the
parameters bo and b1 for the two sets of experiments . This table also lists the weighted average of
the number of test cases required, computed as in [18] using the formula:

weighted average = b2 * DE
1 1 � DEi . where - = - w -- , n IS the number of programs b2 n i=l Ti

The maximum values of W are also listed in Table 5.

(5)

Data in Table 5 lists the parameters obtained from a linear regression analysis between Tm
and DE and T'- and DE. From Table 5 we see that multiplier b1 is 1 .72 and 0.6, respectively,
in the linear equations expressing rm and Td for SET-I (see row 1 and row 2 of the table) . This
implies that a mutation adequate test set is about 2.9 times that of a data flow adequate test
set . For SET-II this ratio is 4.5. These two ratios, 2.9 and 4.5, imply that for a given program, a
mutation adequate test set is larger than a data flow adequate test set. The same conclusion is also
reached by an examination of the values of the coefficient b2 which is used in the weighted average
computation. Also note that the maximum values of the ratio of the size of the adequate test set
and DE (listed in columns 4 and 7 of Table 5) for both data flow and mutation is 4.0 and 4.5 for
SET-I and 2.5 and 4.25 for SET-II.

From the data in Table 5 we conclude that the cost of both data flow and mutation is linear
in the number of decisions in a program. However, the cost of mutation is approximately 2 to 3
times that of data flow. This is also confirmed from Table 3 where the average number of test cases
required to satisfy the mutation criteria is 1 .88 times that required to satisfy the data flow criteria.

A comparison of the regression data listed in Table 5 with that obtained by Weyuker is in order.
In this discussion we refer to Table 1 , column 5, page 124 in [18]. The least squares coefficient b1 in
Weyuker's experiments is 0.93 as compared to our estimates of 0.6 for SET-I and 0.32 for SET-II.
The value of bo in Weyuker's experiments is 1 .40 as compared to our estimates of 2.6 for SET-I
and 3.77 for SET-II. Our results indicate a slightly lower cost of data flow than the cost estimated
by Weyuker due to a lower b1 and only a slightly higher boo As an example, for a program with 15
decision statements, a tester is expected to construct about 12 to 15 test cases to achieve ALL-DU
path coverage using Weyuker's estimate. Using SET-I and SET-II data, our estimate of this range
is 11 to 13 and 8 to 13 , respectively. If, for the same program, a mutation adequate test set is
required, then the tester is expected to construct 22 to 26 test cases as per our estimate using
SET-I and 28 to 32 test cases using SET-II.

6.3 Correlating DE with other data

For each program we also examined the correlation between the number of decisions and the size
of mutation and data flow adequate test sets , and the difference R between FTm and UTd . For
this purpose we computed the Pearson's product moment correlation coefficients [3] for each of the
two sets of experiments . The coefficients appear in Table 6. The first column in this table gives
the average number of decisions in each set. The subsequent columns list the correlation between

- 1 7 5 -

Table 5: Results of regression analysis on the costs of data flow and mutation.

Test set SET-I SET-II

(T) b1 * DE + bo b2 * DE max(i"R) b1 * DE + bo b2 * DE max(iE)
Tm 1 .72 * DE - 0.12 1 .52 * DE 4.5 1 .46 * DE + 5.73 2 . 1 1 * DE 4.25
Td 0.6 * DE + 2.6 .88 * DE 4.0 0.32 * DE + 3.77 .83 * DE 2.5

Table 6: Correlation between the number of decisions in a program and various other statistics.

Set DE 1 Tm 1 1 Ta 1 FTm - Urd (R)

I 7.33 0.86 0.85 0.35
II 6.40 0.87 0.73 0.47

DE and the item that labels the column. For example, 0.86 is the correlation between DE and the
size of the mutation adequate test set in SET-1.

As expected, all the correlations in Table 6 are positive. From this data we observe that the
correlation between DE and the adequate test sets, is high being 0.86 and 0.85 for SET-I and 0.87
and 0.73 for SET-II. This lends strength to our claim made earlier that the number of test cases
required for obtaining mutation and data flow adequate data is linear in DE. Notice, however,
that the correlation of DE with 1 Td 1 is smaller than its correlation with 1 Tm I . This indicates
a stronger linear relationship between DE and 1 Tm 1 than between DE and 1 Td I . However,
the difference is too small (0.87 versus 0.73 in SET-II) to make any strong conclusion. Further, no
such correlation was reported by Weyuker against which we could compare our results.

An examination of the last column in Table 6 reveals a very low correlation between DE and R.
This implies that program complexity, measured in terms of DE, does not significantly affect the
relative difference between the strengths of the mutation and data flow criteria. This also indicates
that the conclusions made above regarding the null hypothesis may be valid for programs with the
larger values of DE usually associated with large (or more complex) programs.

6.4 Summary of statistical analysis

Below is a summary of our statistical analysis and conclusions based on the two independent sets
of experiments. Our analysis and conclusions relate to the strengths of the data flow and mutation
based test adequacy criteria and their relative costs.

1. Of the 18 programs used in our experimentation, for 1 1 (61%) programs mutation adequate
test set also proved to be data flow adequate. On the contrary, the data flow adequate test
set was also mutation adequate for only 1 (5.5%) program.

2. Both sets of experiments can be used to reject the null hypothesis as stated in (1) at 95%
significance level using the sign-test and the Wilcoxon signed-rank test. For SET-II the hy
pothesis can be rejected at 99% significance level. This result lends support to the conjecture
that for a given program, a mutation adequate test set is stronger than a data flow adequate
test set.

3. A high correlation was found between the number of conditions in a program and the size
of the mutation and data flow adequate test data. Weyuker has already provided data in

- , 7 6 -

support of such a conjecture for data flow adequate test data. Our data lends support to
the conjecture that even though the number of mutants generated [4] is in the order of n2 , n
being the number of distinct program variables, the cost of mutation is linear in the number
of decisions in the program.

4. Linear regression applied to pairs of values (D E, Tm) for both sets revealed that the coefficient
of DE is less than 2. For data flow adequate test data this coefficient is less than 1 . This
lends support to the conjecture that the cost of data flow is lower than that of mutation.
However, as indicated above, both costs are linear in the number of decisions in the program.

7 Avoiding possible pitfalls

As in all experiments conducted by humans, we noted the possibility of bias entering the final
results. Such a bias could adversely affect the outcome of our experiments. We therefore took the
following precautions to avoid such a bias:

1 . Data sharing: At the start of the experiment it was decided that the two groups would not
share any data other than the source programs. Data submitted by each group was reviewed
periodically using parameters mentioned below, to ensure that this decision was adhered to.
Within a group test data was shared as pointed out in Section 4. The generation of Tm and
Td was kept independent within each group.

2. Multiple groups: Instead of one group conducting the experiments, we decided that two groups
conduct the experiment using identical methodology. This enabled us to compare the results
obtained by one group with those by the other. The results from both groups exhibited a
similar pattern. For example, as can be seen from the data presented in Section 4, both the
groups found mutation adequate data sets to be consistently larger than data flow adequate
whereas the opposite was not true except for two out of 18 programs.

3. Program selection: An overlapping, though not identical, set of programs was provided to
both the groups. Thus , for example, for program P given to both the groups we compared
the experimental outcomes. The comparison was based on values of two parameters: the size
of the adequate test sets and the cross scores . Apparently random differences in the values
of these parameters indicated that the two groups did not collaborate. For example, I Tm I
for the triangle program was 53 for SET-I and 39 for set 2. The corresponding cross scores
were 0.8 and 0.81 , respectively.

4. Multi-test set sampling: In our experiments, for each program, we constructed only one
adequate test set for each testing method. However, in general, there exist several mutation
or data flow adequate test sets for each program. Thus, instead of obtaining just one cross
score per testing method for each program, one could also obtain a larger sample of cross
scores and take its average as the representative cross score for that program.
Generating multiple adequate test sets for each program, such that each one is independent
of the other, is a resource intensive task. In the absence of any automatic test data generator,
the only way such independence could be achieved is by employing several persons. Each
person could then be assigned to generate one test adequate test set for data flow and one
for mutation. It was the non-availability of the desired number of persons that led us to
generate only one adequate test case per program per testing method . This could certainly

- 1 7 7 -

- -- -- ------------

be construed as a weakness of our experiments. We however believe that the data that we
have provided provides a basis for further detailed experimentation.

Perhaps the best test of the accuracy of the above remarks would be a repetition of the above
experiment by a different research group. The tools and programs that we used in our experiments
are all in public domain. Hence, if need be, such a repetition is indeed possible without any undue
effort that would otherwise go into the making of these tools and for program preparation.

8 Concluding Remarks and Future Work

It is important to note that the observations and analysis presented above are derived from two
samples consisting of 14 and 9 programs respectively. Further, the maximum number of decisions in
any of these programs was 28. Thus these samples contain relatively small programs as compared
to programs that are generally encountered in practice such as an editor, a compiler, an operating
system, or a telephone switching system. Other than the reasons mentioned in the previous section,
we do not have any reason to argue in favor of or against the view that statistical analysis would
reveal significantly different results for larger programs. More experimentation and/or an in-depth
theoretical comparison of the two methods is required to obtain a decisive answer to the conjectures
mentioned above.

Our analysis indicates that a mutation adequate test set is stronger than a data flow adequate
test set. Such a result, however, does not indicate how good the fault detection capability of
mutation is as compared to that of data flow. In this regard, Budd's study appears to be the most
authoritative up until now. In his dissertation [4], Budd compared the effectiveness of complete
path testing against mutation testing. Recall that the criteria that constitute data flow testing are
subsumed by the ALL-paths criteria [6] . Of the 22 faults analyzed by Howden it was shown [11] that
path testing and symbolic execution combined would detect 13 of these faults. Budd showed that
mutation will reveal 20 of these 22 faults. Budd compared the effectiveness of mutation using other
data as well and found that path testing invariably could never find more errors than mutation.
Thus Budd's results are indicative of the fact that, indeed, the fault detection capability of mutation
is superior to that of path testing (and to that of data flow testing) . Combining Budd's results,
obtained deterministically, and ours, obtained statistically, we obtain strong evidence in support of
the conjecture that mutation testing is superior to data flow testing both in terms of its adequacy
criteria and the fault detection capability.

Once again, we would like to point out that both Budd's and our results are based on a small
number of relatively short programs. However, our results strongly indicate that for unit testing
mutation will be more effective than data flow in ensuring reliable units.

We are currently studying the fault detection capability of mutation and data flow using signif
icantly larger programs that consist of over 100 conditions.

Acknowledgement

Elaine Weyuker provided us with ASSET. Rajiv Chaudhary, Duu-Iong Fang, Wei Tsu-min Huang,
Stephen F. Maher, Maryann Perez, Lih-chyun Shu, and Wei Jen Yeh conducted the experiments
reported here. R. J. Martin reviewed a preliminary version of this paper. Vernon Rego's expertise
in statistical methods proved useful in our data analysis . Comments from the anonymous referees
proved useful in improving the quality of this paper. My sincere thanks to all these people.

- 1 7 8 -

References

[1] H. Agrawal, R. A. DeMillo, B. Hathaway, W. Hsu, Wm. Hsu, E. W. Krauser, R. J. Martin, A. P.
Mathur, and E. H. Spafford, "Design of Mutant Operators for the C Programming Language,"
Technical Re[XJrt, SERC-TR-41-P, Software Engineering. Research Center, Purdue University,
W. Lafayette, IN 47907, 1989.

[2] V. R. Basili and R. W. Selby, "Comparing the Effectiveness of Software Testing Strategies ,"
IEEE Trans. on Software Eng. , Vol. SE-13, No. 12, December 1987, pp 1278- 1296.

[3] G. K. Bhattacharya and R. A. Johnson, "Statistical Concepts and Methods," John Wiley &
Sons Inc., New York, 1977.

[4] T. A. Budd, "Mutation Analysis of Program Test Data," Dissertation, Yale University, May,
1980.

[5] B. J . Choi, R. A. DeMillo, E. W. Krauser, A. P. Mathur, R. J. Martin, A. J. Offutt, H. Pan,
and E. H. Spafford, "The Mothra Toolset," Proceedings of Hawaii International Conference
on System Sciences, HI, January 3-6, 1989.

[6] 1. A. Clarke, A. Podgruski, D. J. Richardson, and S. Zeil, "A Formal Evaluation of Data
Flow Path Selection Criteria," IEEE Trans. Software Eng. , Vol. 15 , No 1 1 , pp 1318-1332,
November 1989.

[7] R. A. DeMillo, D .E. Hocking and M.J.Merrit, "A Comparison of Some Reliable Test Data
Generation Procedures," Technical Re[XJrt, GIT-ICS-81/08, Georgia Institute of Technology,
Atlanta, GA 30332, 1981.

[8] R. A. DeMillo, R. J . Lipton, and F. G. Sayward , "Hints on Test Data Selection: Help for the
Practicing Programmer," Computer, Vol. 1 1 , No. 4, April 1978.

[9] R. Hamlet, "Theoretical Comparison of Testing Methods," Proc. Third Symposium on Software
Testing, Analysis, and Verification, Key West, FL, pp 28-37, December, 1989.

[10] J . R. Horgan and S. A. London, "ATAC- Automatic Test Analysis for C Programs," Mem
orandum, Bell Communications Research (Bellcore) internal memorandum, TM-TSV-017980,
1990. Morristown, NJ.

[11] W. E. Howden, "Reliability of the Path Testing Strategy," IEEE Trans. Software Eng. , Vol. SE-
2, No. 3, pp 208-215, September 1976.

[12] B. W. Kernighan and P. J. Plauger, "Software Tools in Pascal," Addison-Wesley, 1981 .

[13] A. J . Offutt, "Automatic Test Data Generation," Technical Report, SERC-TR-25-P, Software
Engineering. Research Center, Purdue University, W. Lafayette, IN 47907, 1986.

[14] S. Rapps and E. J. Weyuker, "Selecting Software Test Data Using Data Flow Information,"
IEEE Trans. Software Eng. , Vol. SE- 1 1 , No. 4, pp 367-375, April 1985.

[15] P. G. Frankl, S. N. Weiss, and E. J. Weyuker, "ASSET: A System to select and evaluate tests,"
Proc. IEEE Con! Software Tools, New York, April 1985.

[16] T. J. Ostrand and E. J. Weyuker, "Collecting and Categorizing Software Error Data in an
Industrial Environment," The Journal of Systems and Software, Vol. 4, pp 289-300, 1984.

- 1 7 9 -

[17] "User's Manual Stat/LibraryT.M. ,,, IMSL Problem Solving Software Systems, IMSL, TX, 1987.

[18] E. J. Weyuker, "The Cost of Data Flow Testing: An Empirical Study," IEEE Trans. on
Software Eng. , Vol. 16, No. 2, February 1990, pp 121- 127.

- 1 8 0 -

Symbol

1)

DE
FTm
M
I M I
MS
M(t)
UTd
Px
P
P(t)
SJ
S�
T
t
I T I
Td

I Td I
Tm
I Tm I

APPENDIX

Table 7: Summary of terminology used

Meaning
Set of subsets of test cases in the input domain of P.
Number of decisions in P.
Data flow score of a mutation adequate test set.
A mutant of P.
Number of mutants of P.
Mutation score.
Output obtained by executing M on test case t .
Data flow score of a mutation adequate test set .
A DU-path of variable x.
Program under test.
Output obtained by executing P on test case t .
Statement containing a definition of variable x .
Statement containing a use of variable x .
Set of test cases used for testing P.
An element of T.
Size of test set T.
Data flow adequate test set for P.
Size of data flow adequate test set for P.
Mutation adequate test set .
Size of mutation adequate test set.

- 1 8 1 -

TESTING A GRAPHICAL USER
INTERFACE,

Experiences with Automation

This paper describes our experiences in automating a test suite for a graphical
user interface. We describe the process, tools, problems and benefits of
automation.

Nancy K. Winston
Tamara Baughman

Mentor Graphics Corporation

8005 S. W. Boeckman Road
Wilsonville, Oregon 97070-7777

(503) 685-7000
Email: nwinston@MENTORG.COM

and
tamarab@MENTORG.COM

Biographical Sketches

Nancy K. Winston currently works for Mentor Graphics Corporation in the QA
group on the Common User Interface project and as a project leader for several
related projects. She is a recent recipient of the Mentor Graphics Chairman's
Achievement Award. Prior to working at Mentor Graphics, Nancy developed
real-time software and database systems.

Tamara Baughman has a B.S. in Computer Systems Engineering from the
Oregon Institute of Technology. She has worked at Mentor Graphics
Corporation for 5 years and is currently in the QA group on the Common User
Interface project. She is currently investigating GUI industry standards for
Mentor Graphics products.

Target Audience: Technical

Keywords: Graphical User Interface, Testing, Verification, Automation

- 1 8 2 -

Introduction

The verification of Graphical User Interface (GUI*)t software is always a
challenge. In projects where it is desirable to set up an automated regression test
suite for verifying the software multiple times during the project life cycle, the
challenge is even greater.

A GUI development project typically includes iterative builds of the software
system. After each build or release, user feedback is sought on the system
appearance and behavior. It is frequently desirable to make changes quite late in
the product development cycle in response to user feedback.

The process of verifying visual changes is problematic. The human eye is
frequently inadequate for viewing small graphic objects on the screen. Some
undesirable regressions to the visual images may mistakenly slip through an
iterative release cycle if the development team relies solely on visual inspection.
Also, visual verification of software releases is very costly.

A common method of verifying graphical software is to save images of
correct screen displays, and compare screen displays from future builds to the
saved images. Any changes to the appearance of the screens after capturing the
reference screen images causes a miscompare. Verification scenarios which
include this screen image compare technique make it difficult to accommodate
desired late changes to the appearance of the screens. This is because all of the
references must be updated to include the changes.

We recently went through the process of designing and releasing a new GUI
at Mentor Graphics Corporation. We made the decision to automate as much of
the verification process as possible. We developed a process for automation and
the tools to support it. This process supports the functional testing for the GUI
and does not address usability testing. Our toolset includes screen image
comparators and graphical viewers to highlight the areas where two images
compare and miscompare.

This paper describes our experiences and the lessons we learned from them.
In it, we describe the process and identify the tools needed for the process. It
also includes a discussion of why we made the decision to automate the process
and the benefits we gained from it, identification of problem areas, our solutions
to the problems raised, and areas for future improvement. Test case selection

t Starred terms are defined in the Glossary.

- 1 8 3 -

paradigms are not covered by this paper.

Development Model for the CUI Project

Mentor Graphics Corporation (MGC*) released a new generation of software
this year. The release, Version 8.0 (V8.0), consists of Mentor Graphics
applications rewritten using object oriented design techniques in C++, an object
oriented language. Included in this V8.0 release is the Falcon FrameworkTw *.
This is a new piece of software that is incorporated into Mentor Graphics 8.0
applications.

The Common User Interface® (CUI*) layer of software is included in the
Falcon FrameworkTw • The CUI provides a Motift compliant GUI for
applications. This includes facilities for customizing menus, creating dialog
boxes* with graphical controls */widgets * , changing key definitions, and other
application environment features.

As mentioned previously, MGC applications incorporate the Falcon
FrameworkTW which includes the CUI. During the V8.0 development cycle, we
employed parallel project development as much as possible. This meant that
while the CUI was being developed, the applications relying on it were also
being developed. This parallel model meant that the CUI team had internal
customers within MGC for releases of software as well as having an end user
customer base for the product.

Having internal customers depending on incremental CUI software releases
greatly influenced the release cycle for the project. Frequently, each application
had needs for releases and functionality that were not consistent with other
applications. This led our group to make frequent internal releases to keep our
application groups productive with the functionality they needed.

Timeliness of releases and functionality were not the only productivity factors
for application development teams. They also needed high quality software so
they could spend a minimal amount of time finding and working around CUI
bugs. This requirement meant that each time the team made an internal software
release available, it had to be verified in some manner.

t Motif is a Trademark of the Open Software Foundation

- 1 8 4 -

There were two more major factors that influenced the CUI project
development cycle. First, usage paradigms of the newly designed products were
not entirely clear at the project start. Since one of the main goals of a OUI is to
make products more usable, doing usage studies of the product and iteratively
refining it during development was a necessity. Second, the Motif standard was
evolving as we developed the CUI. Iterative changes to meet the standard were
required as the standard changed.

The frequent releases, incremental functionality deliverables, desire for high
quality, unclear usage paradigms, and evolving standards led to a very dynamic
development model for the CUI project. This model heavily influenced some of
the verification design decisions and test suite usage.

Non-Automated Verification Procedures

When the CUI project started, the team performed test case development and
verification on an ad-hoc basis. Shortly before the authors joined the project,
the test case development was becoming more methodical and organized but the
verification was still often fairly ad-hoc. It was also time-consuming. Verifying
a release took between 1 -2 person weeks depending on the number of problems
found. By applying 2-3 people to the process, we completed release testing in
2-5 calendar days. In our development environment, that timeframe was
unacceptable. The CUI project was frequently on the critical path for the Falcon
Framework releases due to the verification timetable.

Regardless of whether or not the process is automated, the release verification
task is divided into three parts. Existing test cases are executed and analyzed,
test cases for new functionality are written and executed, and bug fixes are
verified.

The CUI project has an example application that exercises the basic product
functionality. Figure 1 illustrates the visual attributes of this example
application.

- 1 8 5 -

I 1 I I I
-

OUT
12 MOD A MOD B MOD C

r---

Figure 1 Example GUI Application

Prior to automation, an engineer would run the existing test suite by invoking
the example program (see Figure 1) , loading the test case into the example
program, executing the test case, and verifying that the test ran correctly.
Because the entire process, including verification, was manual, the engineer
running the tests had to know quite a bit about each test in order to run it. It was
necessary to know the purpose of the test, how to execute it, and what
constituted a successful run versus a failure. This process made it most efficient
for the test authors to also be responsible for test execution to minimize effort.
That was not always practical or desirable. Other engineers were required to
learn the test cases in detail, duplicating effort.

- 1 8 6 -

New test cases were usually required to verify new functionality in the
releases. The schedules did not always allow time to fonnally write new test
cases prior to shipping an internal release. New functionality in the CUI was
often tested by "playing" interactively with the example application. For
instance, if a new menu was added to the CUI, the engineer responsible for
verifying it would invoke the example application, interactively cause the menu
to display, and check to see that the menu looked correct and operated correctly.
When the engineer closed the example application, that test case was lost. There
was no automated way to re-execute the test on the next software version.

The third segment of release verification involves testing bug fixes. Prior to
automation, test cases for bug fixes were written but had to be run manually in
the same manner as described above. Frequently, there was not time to write
these tests before releases, so the tests were perfonned interactively.

Without automation of the execution and verification of the tests, there was
always a risk that test runs and results were inconsistent between releases. If
something "slipped through" the process due to human error, it was possible to
deliver problems to internal customers that translated directly into productivity
losses.

Automation Description

o Automation Strategy Overview

In January 1990, we made a commitment to provide an automated acceptance
test suite to a system software vendor. The vendor wanted to run our tests before
delivering new operating system versions to MGC. We had long recognized the
need for an automated test suite for internal releases. Scheduling its
development was problematic due to frequent releases and a changing interface
(which would obsolete bitmap* files). We started working on the automation
development in late 1989 in order to meet our schedule to our vendor. We
completed the acceptance test suite in January and had the regression
environment set up in February.

The test environment consists of:

Test Drivers: There are shell script drivers for the acceptance test suite and
the regression test suite. They invoke the CUI example program once for each
test case that is run. The function invocation for test cases is accomplished using

- 1 8 7 -

redirected input into the example program. The window for the example
program is created with the same screen coordinates for each test run.

Test Support Routines: There are additional files loaded into the example
application. These are a series of Test Support Routines (TSRs *)t which are
functions that aid in reporting the test run data. They also support function calls
to the CUI with reduced argument lists and calls into some CUI testability hooks.

Bitmap programs: The test driver also performs screen image (bitmap)
compares. The bitmap reference files stored in the acceptance and regression
reference directories are compared to bitmaps generated during the test run.
These bitmaps are generated using the CUI-provided screen image save
functionality. The program bmap_comp is used to compare bitmaps and view
bitmaps that mlscompare. The program view _bmap may be used to view
bitmaps.

File control for test runs: For each test run, the tester can specify an
individual test case or several test cases. If several test cases are chosen for a
test run, a file that controls which test cases to run is input to the driver. The file
is formatted into lines that have the directory of the test case followed by white
space followed by the test case name. The directory name correlates to a
functional subsystem of the CUI. If just the directory is listed, all test cases
ending in '.test' in that directory will be run.

Test Suite Conventions: There are a set of conventions that the test suite
control programs depend on including names of files (prefixes and suffixes),
directory structures, standard Unix® AT&T utilities' functionality and their
location, having a standard color map installed and read/write permissions for
the test directories.

Test cases: Test cases are specified in the MGC extension language,
AMPLETM *. This language is part of the Falcon Framework™ and is "C-like".
These test cases call the TSR functions for common routines such as error
reporting. The test cases contain the actual test code for exercising menus,
dialog boxes, etc. Each test case name ends in a ".test" suffix and contains a
main test function named "ftestO". The test cases are loaded into the example
program and executed via redirected input.

t See Appendix A for TSR examples.

- 1 8 8 -

- - -------------------------

Results Reporting: Each test case generates logical output text (logical
transcript file) which details the functions called and their results. This output is
saved into a file which is compared to a reference file by the test driver. Screen
images are also saved and compared to reference image files (bitmap files). For
a test run, there is a log file saved that details all test cases run and their high
level results. t

o Details of Automation Strategy

Several tools were available to help us automate the test suite. We had some
testability hooks available in the CUI which would allow us to record and
playback the physical events. Examples of physical events are mouse clicks,
cursor movement or key presses. We also had functionality in the CUI to
capture screen images in a HP/Apollo GPR bitmap format. There had also been
some programs developed inhouse to allow two HP/Apollo GPR bitmap files to
be compared, viewed, and compressed. Because we already had the toolset for
the HP/Apollo GPR bitmap format, we used this format as our starting point in
the test suite.

The bitmap compare program provides the tester with the capability to view
the differences between the files visually or in an automated fashion. Invoked
visually, it clears the screen and alternately displays both bitmaps on the screen.
U sing a key sequence, the user can stop the alternate display and toggle between
the two bitmaps or choose to just see the differences between them (an XOR
comparison) .

A Unix® AT&T shell script (test driver) was developed which controls the
test run and the reporting of the test results. The shell script also invokes the
CUI example program once for each test case that is run. Each test case is
loaded into the example program using the facility provided by the CUI for
loading extension language programs. The test driver also controls the window
size and location for the test run. The window is created with the same
coordinates for each test so the screen images are always the same size and in the
same location for comparisons, and the physical events playback correctly. (The
recording of the physical events is dependent upon the screen location of the
mouse cursor.)

Due to the number of releases the CUI team had to provide, it was very
important that the tests be set up so the tester could easily specify which tests to

t See Appendix C for a Test Run Log File example.

- , 8 9 -

run. The tester could run the entire regression test suite, a particular subset of
tests or just one test. This flexibility allowed the tester to run the exact number
of test cases that were appropriate for the release. Each release can be analyzedt
to determine which set of tests need to be re-executed to verify the release. This
particular scheme also provides a framework for new test development. An
additional benefit to this strategy was that it made running tests so easy, the
development engineers started running tests to validate their coding changes
before the QA engineers received the release.

Another requirement for the test suite was to provide a mechanism in which
the tester could run the tests interactively (manual mode) or automatically. This
is useful because there are times when it is necessary to execute a group of tests
manually. For example, when using the CUI facility for capturing interactive
sessions for future replay, manual execution allows the tester to simulate user
actions, place them into a file, and then use the automatic mode for replaying
them in order to verify the test case. Developers use the manual mode to debug
reported problems. When verifying a release, it is faster to execute test cases in
an automatic fashion and analyze the results after all tests have run.

Finally, in order to easily analyze the results of a regression test run, it was
necessary to write a shell script which logged tests which did not execute
correctly. The majority of the CUI test cases relied on the result of bitmap image
comparisons for validation. Also, the CUI was in a very dynamic state. A
bitmap miscompare could be the result of a deliberate change in the software or
an actual bug. The results analysis program allowed the miscompared files to be
visually inspected and the user was given the option to update the reference files.
This reduced the amount of time needed to update reference files when
deliberate visual changes occurred in the software. Figure 2 shows the flow of a
typical automated regression run.

t The analysis uses data gleaned from code reviews and walkthroughs, team
discussions, source code control system reports on file changes, and information
from the project manager. These factors are all considered and the QA team
decides which tests should be run.

- 1 9 0 -

run regression
test in auto

mode

generate
test result

ana yze
test results

vIew
differences

between test
and r.ef tiles

y

y

copy new
reference tile

N

log problem
re ort

DONE

Figure 2

Based on the above assumptions and requirements, test case subdirectories
were created which represent each of the functional subsystems of the CUI. For

- 1 9 1 -

example, there is a separate directory for the menu subsystem, the dialog box
subsystem, etc. Each test case was placed in the directory of the subsystem it
tested. This allowed for all the tests for a particular subsystem to be executed
without running the entire test suite.

After it was determined how the tests would be organized, it was necessary to
decide how to document and format each individual test case. The
documentation consists of a title, a detailed description of the purpose of the test
(what functionality is being tested), the test inputs and the expected output. Each
test was written in the AMPLEn.t extension language. Also, it may be necessary
to input physical events which simulate interactive user actions to test the CUI
(ie: press the mouse button on a menu item, drag the mouse, release the mouse
button). The CUI has a record and playback facility called "physical
transcripting*" that allows this type of input in an automated fashion. Many of
the tests contain physical transcripts as part of the test input.

When a test case is written, the test needs to be debugged to ensure that it runs
correctly. Each test contains a function (called manual_ftestO) which when
executed, provides the tester with instructions for the test scenario and expected
results. If the test requires a physical transcript, this function provides the
instructions for capturing the physical events in a log for future replayt . Figure
3 shows the typical flow of test case development.

t See Appendix B for a Physical Transcript file example.

- 1 9 2 -

.----"""71
develop test

N

case

run test
manually to

debu

capture
physical

events for tes
in ut

capture
output for

reference file

DONE

Figure 3

- 1 9 3 -

When verifying a release or debugging a problem, it is often desirable to have
two different modes of test execution. manuaCftestO is the function which gets
executed when the tester specifies a manual test run. ftestO is the function
which runs the test case in .an automated mode. If the input includes a physical
transcript, it is replayed by this function.

The test output has two fonns - physical screen images and a logical record of
the test execution. The CUI sends logical data about the function execution to an
output stream so that users of MOC applications have a history of their actions.
The test driver redirects this logical transcript output to a test case log file which
is compared to a reference test case log filet .

In some cases, it is possible to examine the internal state of the CUI. The
software provides AMPLETM system functions which return this type of
infonnation. When this is available, the test case software can check for expected
values without having to capture a bitmap image. If the expected result was not
obtained, then the test case can generate an error message using one of the TSR
functions. The error message consists of an error number, the test result, the
expected result and a description of the error. This allows the tester to later go
back and determine exactly where the test failed. These error messages are
captured in the logical transcript of the test run. When comparing the logical
transcript to the reference ·file, the discrepancy will be brought to the tester's
attention.

To test some graphical states, it is necessary to capture the graphical image of
the screen. The CUI provides an AMPLETM function which will generate a
bitmap and save the data in a file. The amount of the image saved can be
qualified by specifying the entire application window, a particular window
within the application or a user defined area. This can help to reduce the size of
the bitmap file. These bitmap files which are generated during a test run can
then be compared with their corresponding reference files in order to verify the
test run.

To support the development of the test cases, TSRs were developed. The
TSRs were also written in AMPLETM . They are loaded into the example
application along with the test cases. These TSRs provide a set of functions
which represent repetitive tasks for each test case. For example: a function
which would check that two arguments were equal and report an error message if
they were not equal; a function which would take multiple strings and display
them in the logical transcript for instructional purposes.

t See Appendix D for an example of these logical transcript log files.

- , 9 4 -

There are still the same three release verification tasks to accomplish under
the automation setup - running existing test cases, writing and running new test
cases, and verifying bug fixes. The main difference is that the environment they
are done under is different. The test runs can be controlled so that the same
regression and bug fix tests are run on multiple releases giving a high degree of
confidence in the releases. Also, the automation strategy allows us more time to
write new functionality tests and bug fix tests prior to the release shipment.

Automation Savings on the CUI project

The initial cost of setting up the automated test suite was approximately two
months for two QA engineers. However, the payoff was high considering the
number of releases the project had to support. Verifying a release cost 1 -2
person weeks prior to automation. Since the automated test suite was
implemented, the cost averages 1 -2 person days. That is an 80% reduction in
cost. The savings are more than time, although that is always an important
metric. Morale on the project has greatly increased because engineers are not
always tied to manually running tests. There is much more time available for
up-front quality activities like specification and code reviews and walkthroughs,
requirements interviews, and technical training. We are able to find bugs faster
resulting in less stress for the entire team. There is also much more time for test
development and documentation. Also, our team is usually no longer the
critical path for Falcon Framework'" releases.

Problems With Automation

The CUI automation strategy included saving screen images and comparing
them to saved images for an exact match. The development cycle for the CUI
was iterative, with the team making changes to the appearance and behavior
based on usage feedback. When changes to the appearance were made
deliberately, it became necessary to update all of the screen image reference files
to confonn to the new appearance. Also, some of the visual changes altered the
real-estate of the CUI. The CUI recordlplayback functionality is dependent on
physical locations relative to the screen. Real-estate changes caused some
physical transcripts to replay incorrectly because the graphical objects that were
being acted on had moved. This meant re-Iogging the physical events for those
tests. This process was time consuming and tedious.

- 1 9 5 -

Our solution to this was to group visual changes into a few specific software
releases. The downside to this was that we were less responsive to change than
our customers would have liked. We received comments from them stating that
they wanted us to wait until further in the development cycle to use this type of
automation so that we could be more responsive.

The automation strategy did not account for verifying multiple Apollo display
types. Multiple display type verification occurred infrequently and it was not
cost effective to maintain several sets of bitmap reference files. So when
performing configuration testing it was necessary to rely on the results of the
logical transcripts and perform some of the more intensive visual tests manually.
IT this testing had been performed more frequently, we probably would have
invested in automating it more fully.

Some testing hooks were specified to be added to the CUI software to aid
automation. The priorities of this work conflicted with some other project goals.
Some testing strategies were never implemented because these hooks were
missing. These hooks should have been given equal priority to customer-visible
functionality in the product specification. To address this problem, testing hooks
are now included in design documents of all current and future CUI projects.

When the project started, MGC software was only delivered on one vendor's
hardware. MGC now delivers software on multiple platforms. Changing
platforms typically requires saving a new set of screen image reference files due
to differences in rendering on different platforms. We are also changing the
toolset to generate and read bitmaps with a TIFF format which is a more portable
screen image format. There were some other portability issues with the test suite
such as patbnames and filename length, which we modified the tests to
accommodate. It took approximately three weeks to port the test suite to the
SUN workstation. It is anticipated that it will take even less time to port to the
next platform since all Apollo specific features have been removed from the test
environment. The test environment is now a true Unix® environment with TIFF
formated screen images.

Initially, the test cases were not placed under source code control. It was
difficult to test different versions of software releases without version control on
the tests. This work is currently underway.

- 1 9 6 -

Future Improvements Needed

After completing this project, it is clear to us that the overhead for this
automation strategy would have been prohibitively high in the very early CUI
project stages - from prototyping to early designs being available. We need
other techniques to verify early graphical designs. We would like to investigate
methods of object self-reporting. Each object would be required to report its
current status. We would verify test objects visually and query them too. If the
responses from the queries match the visual state observed, we might be able to
extrapolate that additional verification of these objects could be accomplished
through the query mechanism instead of capturing screen images. This would be
a major step forward in our process.

We would also like to investigate some "fuzzy" comparison techniques.
Perhaps we would be able to identify sections of the screen images that we don't
want compared. It would also be nice to pick sections where certain ranges of
values are close enough without matching exactly. We haven't done any work in
this area yet.

After problem reports are filed due to test case failures, it would speed up
verification of future test runs if these tests that are now "expected" to fail were
flagged differently from new failures. We are currently looking into adding this
expected failure condition to the test suite.

Physical transcripts are files that contain pairings of a physical screen location
and an event. They are difficult to read and edit. If part of a transcript session
needs to be modified, it is usually necessary to re-record the entire session. An
interactive editor for these transcripts would be a helpful piece of functionality
for the QA groups using this mechanism.

- 1 9 7 -

Glossary

o Ample™ - Advanced Multi-Putpose Language. The Falcon FrameworkT"
"C-like" extension language. With it, you can extend and customize the
Common User Interface of MGC applications.

o Bitmap - A screen image.

o CUI - Common U�er Interface - Mentor Graphics Version 8.0
implementation of a Graphical User Interface. Alternately, a generic term
equivalent to Graphical User Interface.

o Dialog Box - A rectangular transient object that provides information to the
user or requests information from the user. Dialog boxes are often thought
of as "forms" to fill out.

o Falcon Framework™ - A common environment in which MGC
applications run. MGC applications use the framework to provide a
common interface, flexibility, and concurrency.

o Graphical Controls - Graphical objects within an application that allow
users to interact with the application by directly manipulating them.

o GUI - Graphical User Interface - Provides a user with direct manipulation of
graphical objects as a means of interacting with an application.

o MGC - Mentor Graphics Cotporation - A company headquartered in
Wilsonville, Oregon that produces computer solutions for CAE/CAD
designers. Applications include software tools supporting schematic
capture, integrated circuit layout, digital and analog simulation, printed
circuit board layout, and electronic packaging.

o Physical Transcript - A file that contains pairings of a physical screen
location and an event. This is the CUI physical event record and playback
system data file.

o TSRs - Test Support Routines - Functions that aid in reporting the test run
data.

o Widget - A graphical control.

- 1 9 8 -

Appendix A - Test Support Routine Examples

This appendix contains 4 example AMPLE"" code TSR functions and some
AMPLE"" variable initializations. These are provided to illustrate the nature of
AMPLE"" as well as some examples of the functionality that the TSRs provide.

extern area@@$apd_test_Io�file = $stderr;
extern area@@$apd_test_error_count = 0;
extern area@@$apd_test_case_count = 0;

II ---
1/ Print an error message to the log file and increment the error counter.
II -- -

function $lo�error-message(test_case_number : integer,

{

}

text : rest
), INVISmLE

area@@$apd_tescerror_count = area@@$apd_test_error_count + 1 ;
local hdr_msg = $strcat($strcat("Test case " ,

$i(test_case_number, 5, , , @zero)),
" : BUG detected");

$writeln_ftle($stdout, hdr_msg);
if (area@@$apd_test_Ioggin�on)

$writeln_file(area@@$apd_test_log-file, hdr_msg);

local num_Iines = length(text);
local i;
local prefIX = "";
for (i = 1; i = num_Iines; i = i + 1)

{

}

$writeln_ftle($stdout, $strcat(prefix ,text[«i) - 1)]));
if (area@@$apd_test_Ioggin�on)

$writeln_file(area@@$apd_test_log-file,
$strcat(prefix ,text[«i) - 1)]));

prefix =
" " ;

function increment_test_case_countO
{

- 1 9 9 -

}
II - � -

I I Check that the two input arguments are equal and print an log the error
I I if they aren't.
II ---
function Seq_check (argl ,

{

}

arg2,
tesccase_number : integer,

error_desc : optional string { default =
1 1 1 1 }

), INVISffiLE

incremenctesccase_countO;
if (argl != arg2)

{

}

local err_msg = $strcat($strcat($strcat(
"Test value (" ,arg2string(argl)),

") != I I),

arg2string(arg2));
$lo!Lerror_message(tesCcase_number, err_msg, error_ desc);
return false;

return true;

II --
II Display helpful messages to the user in a separate window or dialog
II box.
II --
function $display _text(text : rest), INVISffiLE
{

}

local num_Iines = length(text);
local i;
II Send message to $stdout
for (i = 1 · i = num lines· i = i + 1) , - ,

$writeln_file($stdout, text[«i) - 1)]);

Appendix B - Physical Transcript File Example

This is an example of a physical transcript file, recorded interactively in the
CUI. The test scenario for these physical events instructed the user to bring up a
popup menu using the mouse and select a menu item.

(141 , 3 1 1) : : 2901 26 Mouse_move
(141 , 3 1 3) : : 290180 Mouse_move
(142 , 307) : : 2901 96 Mouse_move
(144 , 287) : : 290202 Mouse_move
(146 , 259) : : 290207 Mouse_move
(149 , 236) : : 290213 Mouse_move
(150 , 226) : : 29021 8 Mouse_move
(151 , 224) : : 290224 Mouse_move
(152 , 221) : : 290230 Mouse_move
(152 , 220) : : 290254 Middle_mouse_button [NoModifier] [down]
(152 , 220) : : 290346 Middle_mouse_button [No Modifier] [up]
(152 , 220) : : 290364 Right_mouse_button [NoModifier] [down]
(152 , 220) : : 290374 Mouse_stop
(159 , 223) : : 290750 Mouse_move
(180 , 233) : : 290756 Mouse_move
(194 , 241) : : 290761 Mouse_move
(195 , 240) : : 2908 1 3 Mouse_move
(195 , 240) : : 2908 14 Right_mouse_button [NoModifier] [up]
(195 , 240) : : 290885 Mouse_stop
(195 , 240) : : 291 3 1 6 Other_key 9 [NoModifier] [down]
(195 , 240) : : 291331 Other_key 9 [NoModifier] [up]

- 2 0 1 -

Appendix C - Logical Transcript from a Test Run

This transcript is output from a test run of 2 test cases from different
subsystem directories - the fonns and acceptance tests subsystems. It illustrates
the fonnat of results reporting. This is the highest level log file from the test run.
The <filename>.tx files contain more detailed infonnation about any failures
reported and are the actual test case log files that are compared to reference test
case log files. Note that the test, uw_session_area.test, had a bitmap comparison
failure and an internal test case check failure. To investigate further, we would
read the file uw_session_area.tx. After this test run, the user would also be
prompted to run the bitmap comparison tool and the tools to update the reference
files.

Mon May 13 08:58: 15 PDT 1991
--

----------------------------- CUI Regression Test ---------------------------
--

User: nwinston, Node Name: tamarab
Note! Total Number of Tests to Run = [2]

++++ l i t 1 t i l l l i t t i l l t i l l 1 1 1 1 I I I l i t I t i l I l i t I I 1 I 1 1 1 -+ + t t t t +++
« 2)) --> FORMS.HM/UW _NAMED_ARGUMENT.TEST >

/idea/tmp/uims_regr.uw _named_argument.tx

Started at 08:58:22
Stopped at 08:59:53

*** TEST EXECUTION SUMMARY:
> "Test session begins. ""Monday, May 1 3, 1991 08:59:06"
> "Begin test UW _NAMED_ARGUMENT"
> "End of test UW _NAMED_ARGUMENT"
> " 10 test cases"
> " 0 bugs detected."
> "Test session ends. ' ' ' 'Monday, May 1 3, 1991 08:59:42"

The complete test transcript is in /idea/tmp/uims_regr.uw_named_argument.tx

BITMAP compare Passed
BITMAP compare . Passed
TRANSCRIPT compare .. Passed

- 2 0 2 -

++++++++++i l 1 1 1 1 ++++++++ 1 1 1 ++++++++++ 1 I i 1 ++++++++++++++++
« 1)) --> ACCEPT.HM/UW _SESSION_AREA. TEST >

/idea/tmp/uims_regr.uw _session_area.tx

Started at 09: 15 :02
Stopped at 09: 16:05

*** TEST EXECUTION SUMMARY:
> "Test session begins. ""Monday, May 1 3, 1991 09: 15:33"
> "Begin test UW _SESSION_AREA"
> "Test case 00003 : BUG detected"
> "Test value (false) ! = true"
> " The sample window should be visible. Expected failure PR24338"
> "End of test UW _SESSION_AREA"
> " 3 test cases"
> " 1 bug detected."
> "Test session ends. ""Monday, May 13, 1991 09: 15 :55"

The complete test transcript is in /idea/tmp/uims_regr.uw _session_area.tx

BITMAP compare .. Passed
BITMAP compare .. FAILED « « «
BITMAP compare .. Passed
TRANSCRIPT compare .. FAILED « « «

===

--------------------------- CUI Regression Test COMPLETE ----------------------

===

Statistics Summary:
1 3 internal test cases were exercised

of which 1 (1 %) failed.

7 result files were generated
7 of these result files were compared to reference files

and 2 (29%) of these comparisons failed.

Regression Run STARTED : 08:58: 15
FINISHED: 09: 16: 15

'

===

Total Elapsed time -----> 00: 1 8:00

- 2 0 3 -

- --- - --- ----------.

APPENDIX D - Reference Test Case Log File

This is the test case log file that is the reference for the test
uw _session_area. test in Appendix C. If the test in Appendix C had run
correctly, it would have had the following output in the file named
uw _session_area.tx.

ftestO;
II "Begin test UW _SESSION_AREA"
$secactive_ window("Transcript");
II "End of test UW _SESSION_AREA"
I I I I 3 test cases II

I I II 0 bugs detected. II

$secactive_ window(" sample ");

- 2 0 4 -

User Interface Evaluation in the Real World:
A Comparison of Four Techniques

Robin Jeffries
Hewlett-Packard Laboratories

P. O. Box 10490
Palo Alto, CA 94303-0969

Abstract

A user interface for a software product was evaluated prior to its release by four groups, each
applying a different technique: heuristic evaluation , software guidelines, cognitive walkthroughs,
and usability testing. The relative advantages of all the techniques are discussed and suggestions
for improvements in the techniques are offered.

Author's biography

Robin J effries is a project manager in the Human-Computer Interaction Department of
Hewlett-Packard Laboratories . She has a Ph .D. in Cognitive Psychology. She primarily conducts
and directs research on the design of improved user interfaces for information management ; her
work on user interface evaluation grew out of an interest in improving the design of user interfaces
by focusing on evaluation earlier in the design process.

- 2 0 5 -

Introd uction

An important aspect of software quality is an application's usability, which can be loosely defined
as how usable and useful the application, via its user interface, is to its intended consumers.
Determining the usability of an application is surprisingly hard. There are to date no practical ,
analytic techniques that enable us to predict with any confidence the usability of a specific interface
or to isolate the factors that contribute to a less than optimal user interface. All we have is a grab
bag of heuristic methods that can expose some potential problems. The time honored method for
determining the quality of the user interface is via usability testing, where a representative sample
of prospective users are asked to do a variety of tasks using the application, and a trained observer
makes inferences about problems in the user interface, based on difficulties the users have doing
the tasks.

While usability testing has been quite successful in isolating problems with product user in
terfaces and feeding them back into the development process, there are some limitations to the
technique. For one, it doesn't find all the problems in an interface. Products that have undergone
extensive usability testing still generate complaints by users about the user interface. This is un
avoidable; in an application of any complexity, it would be impossible to sample all of the tasks,
possible actions, types of users, etc . , that can impact the usability of the interface. Thus, only a
subset of the possible problems will surface in any real test.

A second problem with usability testing is that the application must be quite complete before
the evaluation can be done. This means that changes to the application of any significance are
expensive to implement and can have a serious impact on a delivery schedule. Current wisdom has
it that correcting a usability problem during the implementation or test phase costs a factor of ten
more than correcting that same problem during the design or paper prototype phase. Of course,
not all usability problems can be observed with mockups or prototypes of the user interface, but
even if a subset of the problems could be corrected earlier , substantial savings would accrue.

The third problem with usability testing is that it is expensive to carry out. The costs include the
special equipment (a testing lab) needed to conduct the studies, the rather substantial commitment
in time to do the tests, and the special skills needed to design, conduct , and analyze data from such
studies . Professionals with the appropriate skill and knowledge to do usability testing are a scarce
resource in most organizations. Since they are typically assigned to several projects simultaneously,
meshing their schedules with the needs of the product team is a problem.

Recently, several additional techniques have been proposed that would overcome some of the
limitations of usability testing. The first of these is to have the same user interface professionals do
more informal evaluations of the interface, by studying it in depth and looking for properties that
they know, from experience , will lead to usability problems. We call this heuristic evaluation, after
[6] . Nielsen and Molich [6] showed that one could compensate for the idiosyncratic results one gets
from a single heuristic evaluation by combining the results of several independent evaluations.

A second technique is the use of guidelines. Guidelines provide evaluators with a set of criteria
that the user interface must a.dhere to. Some types of guidelines are meant to check compliance
to the standards and conventions of a particular interface style. These are commonly called style
guides. Another class of guidelines is intended to measure adherence to generally accepted and
broa.dly applicable principles of good user interface design (e.g. , how the contents of a screen should
be organized or how items should be arranged in a menu [1] [7]) . It is this latter class of guidelines

- 2 0 6 -

that we refer to in this paper. Guidelines can be used by evaluators with no special training in user
interface evaluation, if they include techniques for measuring how well a specific example adheres
to each rule. Thus, the developers themselves could use appropriately constructed guidelines to
critique their own designs. For the experiment described below, we used a set of 62 guidelines
developed within Hewlett-Packard [2] , that are written to be applied by software developers or
evaluators without special user interface training.

A third technique is cognitive walkthroughs. The cognitive walkthrough method [5] combines
software walkthroughs with a cognitive model of learning by exploration [4] . The evaluators walk
through the interface in the context of core tasks a typical user will need to accomplish. The actions
and feedback of the interface are compared to the users' goals and knowledge, and discrepancies
between the user's expectations and the steps required by the interface are noted. The cognitive
walkthrough method is intended to be used by the developers themselves and can be applied to
early prototypes of the application. While this technique was recently developed in an academic
environment and is not in common industrial use, the ideas embodied in it are interesting enough
to consider as a alternative to more established techniques.

Little is known about how well any of these techniques work, especially in comparison to one
another: what kinds of interface problems they are best-suited to detect, whether developers who
are not user interface specialists can actually use them, and how they compare in cost/benefit
terms. The experiment described in this paper was designed to provide such a test .

The Experiment

We obtained a pre-release version of a forthcoming software product and organized groups to eval
uate its interface with the four techniques described above: heuristic evaluation , usability testing,
guidelines, and cognitive walkthroughs. Each of the evaluation groups reported the problems they
encountered on a common form, so that the numbers and kinds of problems detected by the different
groups could be compared .

A primarily goal for this experiment was for all the evaluations to occur in conditions as close as
possible to those that might exist in a real product evaluation. We used the results from the actual
usability tests that were done for this product . Similarly, we used researchers in HP Laboratories
who are frequently called upon to perform heuristic evaluations for real clients. The set of guidelines
and the cognitive walkthrough technique have not been used in their current form on enough real
products to determine what realistic usage patterns would be. Accordingly, we worked with the
developers of these methodologies to set up procedures that were consistent with the ways that the
technique developers intended them to be used.

The goal of realism means that these evaluations suffered from all the real-world problems
of interface evaluation. We were limited in the number of people who could participate in the
evaluations and the amount of time they could devote to them. We had limited access to the
developers, who were hundreds of miles away and busy producing the final version of the product.
However, we believe that these evaluations are quite typical of what goes on in product development ,
and therefore our results should be a good measure of how these techniques will work when applied
in the real world.

- 2 0 7 -

Based on [6] we decided that four heuristic evaluators would provide a reasonable coverage of
the set of problems in the interface (they recommend 3-5 heuristic evaluators to overcome the
idiosyncratic focus of any individual evaluator).

Both the guidelines and the cognitive walkthroughs are intended to be used by the actual
designers and implementers of the software being tested. Since we did not have access to the
original designers for this study, we used teams of three software engineers. We chose them to be as
similar to the actual developers as possible - they all had substantial familiarity with the platform
on which the interface was built and had designed and implemented at least one graphical user
interface. Since the biggest difference between them and the actual developers was familiarity with
the application being evaluated, we asked all the evaluators to spend as much time as they could
familiarizing themselves with the application before doing the evaluation. (For additional details
on the experimental procedures, see [3] .)

Results

The evaluators filled out a total of 268 problem report forms (152, 38, 38, and 40 for heuristic evalu
ation (HE) , usability testing (UT), guidelines (G) and cognitive walkthroughs (CW) respectively) .
We sorted out several categories of reports that were not directly attributable to the interface be
ing evaluated (e.g . , problems caused by conventions or requirements of the underlying platform, or
clear evaluator errors) and duplicates within groups (primarily multiple heuristic evaluators finding
similar problems). This left a total of 206 core problems: HE: 105, UT: 31 , G: 35 and CW: 35.

In terms of raw numbers of problems found, heuristic evaluation by four independent evaluators
finds substantially more problems than do any of the other techniques . However, not all user
interface problems are equally serious. Perhaps the heuristic evaluations were finding a large number
of relatively trivial problems. To test this we had seven individuals rate the severity of the 206
core problems on a scale from 1 (trivial) to 9 (critical) . The raters included four user interface
specialists and three people with a moderate amount of such experience. The overall mean of 3.66
is indicative of an application whose user interface is relatively mature - the vast majority of truly
serious problems had been found and fixed by previous evaluations in the development process.

Heuristic Usability Cognitive
Evaluation Testing Guidelines Walkthroughs

I Mean severity 3 . . 59 4.15 3.61 3 .44

Table 1: Mean problem severity by technique.

The mean ratings of the different groups [see Table 1] varied significantly. (F(3, 18) = 5 .86 ,p <
.01) . The higher rating for usability testing may reflect the ability of that technique to find more
serious problems, or it may instead reflect a bias on the part of the raters . While evaluators in the
other groups stated their problems in personal or neutral terms, the usability tester used phrases
such as "users had trouble . . . " . Thus, it was easy to tell which problems came from the usability test .
Of course, attributing greater severity to problems reports that are backed by data is a reasonable
strategy, both for our raters and for developers receiving usability reports.

- 2 0 8 -

A different notion of problem severity is the certainty that a problem really is one in need of
repair. For instance, a missing label marking a numeric field as measuring minutes or seconds is
clearly a problem needing to be fixed ; the suggestion that animation would be a better way to show
hierarchical directory relationships than a tree diagram is more a matter of taste . Preliminary
results from ratings of this "real vs. taste" dimension suggest that the heuristic evaluation and
cognitive walkthrough groups included more "taste" problems. If confirmed, this finding may reflect
the inclusion criteria of different evaluators , or it may suggest something more fundamental about
these evaluation techniques .

We also looked at the numbers of most severe (top third) and least severe (bottom third)
problems found by the different groups. The heuristic evaluators found a much higher proportion
of the least severe problems (almost twice as many least severe problems as most severe) ; however,
in terms of raw numbers , the heuristic evaluators still found more highly severe problems than any
of the other groups.

We used the severity scores and information about the time spent on each technique to produce
a very rough benefit/cost analysis across the four techniques. Our model was that benefit could
be approximated by the sum of problems found weighted by their severity, and cost by the time
required to find those problems. This, of course, fails to take into account a number of aspects of the
costs and benefits of doing evaluations. Some of these are measurable - e.g., the direct monetary
costs of the evaluations , ranging from the salary of the evaluators to the cost of equipping a usability
test lab , while others are more intangible - e.g., the benefit of having the evaluators do their own
evaluations . However, we believe that even this simple model gets at some important aspects of
costs and benefits of doing user interface evaluations.

Even within this model , we debated various ways of measuring the costs and benefits. For ben
efits, we considered both a linear weighting of problems by their rated severity and an exponential
weighting based on rated severity, which gives much heavier weight to the most severe problems.
For costs , we considered whether to include the time to be trained on the technique (for guidelines
and heuristic evaluation) ; one could assign that cost completely to the first evaluation done with
a technique or amortize it over a large number of future evaluations. We also debated whether to
include interface familiarization time for the techniques that were intended to have been applied by
the developers themselves . In a non-experimental situation, such costs would not exist; however,
there were very different amounts of time spent by different groups, and we believe that those
differences do impact the number of problems found.

We ended up doing a large number of different analyses, based on various combinations of
assumptions about the appropriate factors to include in both costs and benefits. Table 2 gives the
information needed to compute any of the benefit/cost ratios. The final row of the table gives the
range of benefit/cost ratios that we found. While differing assumptions do change the results, a
general trend is clear: under all assumptions, usability testing is the most expensive technique to
apply, heuristic evaluation was the most cost effective, and guidelines and cognitive walkthroughs
were consistently in between.

Comparing the Techniques

Overall, the heuristic evaluation technique produced the best results. It found the most problems,
including more of the most serious ones, than did any other technique, and at the lowest cost.

- 2 0 9 -

linear
exponential

Heuristic
Evaluation

Usability
Testing

Cognitive
Guidelines Walkthroughs

Benefit: Sum of severity scores

433 1 133 1 130 1 355 175 205

Cost : Time spent on analysis (person-hours)

120
81

analysis time 1 2

1
�
5
1 19

_

_

9 1
6

1

�

7 1 27
technique training . . . 10
interface training I-L==========�========�==========:============6�

Range of benefit/cost ratios: severity/time
12-10 1 12-2 I 4-2

Table 2: Benefit/cost ratios for the four techniques.

However, it is dependent upon having access several people with the knowledge and experience to
effectively apply the technique. Our heuristic evaluators were skilled user interface professionals,
with advanced degrees and years of experience in evaluating interfaces. They were also knowledge
able about the specific style of interface being evaluated and the task domain it applied to. Such
people are a scarce resource, and their time is valuable, especially since multiple evaluators are
necessary to obtain the kinds of results found here; no individual heuristic evaluator found more
than 42 core problems. Other limitations of heuristic evaluation are the relative numbers of low
priority problems reported and the tendency to report more problems of an idiosyncratic, "personal
taste" nature. The kinds of problems found by these heuristic evaluators would primarily require
a full functionality prototype. There are forms of heuristic evaluation that can be applied to early
mockups of the interface; however, one should be cautious in generalizing our results to those very
different forms of evaluation .

Usability testing did a good job of finding serious problems: on the average, the problems it
found were more severe than the three other techniques , and it reported virtually none of the low
priority problems that the heuristic evaluators focussed much of their energies on. However, it was
the most expensive of the four techniques to apply. A formal usability test is by necessity quite time
consuming. On the other hand, one must also consider the intangible benefits of the results: the
necessity of fixing the problems found is practically indisputable; the experiences of real users back
the conclusions drawn, rather than opinions, as is the case for heuristic evaluation . Thus, there
is little additional cost directed at convincing developers to act on the findings. Formal usability
tests occur late in the development process, requiring relatively complete and robust prototypes.
But there are forms of user testing that can be conducted earlier in the development cycle with
mockups. Again, the results of this experiment would not necessarily generalize to those techniques.

While guidelines overall produced a moderate benefit at a moderate cost, their most important
role may be their ability to serve as a focusing device, forcing evaluators to take a broad look
at the interface, rather than limiting their evaluation to a subset of the interface's properties.
Such was the case here: in the post-evaluation questionnaire, the guidelines evaluators were more
confident that they had covered the entire interface than the heuristic evaluators. Furthermore, the

- 2 1 0 -

guidelines evaluators indicated that many of the problems they found were not as a direct result
of the guidelines themselves, but were unrelated problems they noticed in the process of applying
a specific guideline. Guidelines have the advantage of being usable by the developers or other
people not specially trained in user interface evaluation. They can only be applied, however, to the
completed interface, late in the development process. The same guidelines could, in principle, be
used by developers at the time they were designing an interface, to help them make more informed
design choices. We have not examined whether developers could use the advice in the guidelines
to produce better use� interfaces, but it may be a promising, low-cost approach.

The cognitive walkthrough technique needs further refinement before it is generally useful for
user interface evaluation. The concept is very attractive: a technique that can be used by the
designers themselves on very early prototypes or designs to critique the interface in the context of
the actual intended tasks and users. An especially important benefit would be that the developers'
understanding of the source of the problems should eliminate the need for intermediaries to translate
the problem descriptions into recommendations for redesign.

The results of this experiment showed that the walkthrough technique partially lives up to
these expectations. Software designers similar to the developers of this interface were able to use
the technique successfully and found a moderate number of problems. However, there were many
limitations to their use of the technique. First, the successful use of the cognitive walkthrough
technique critically depends on the selection of an appropriate set of tasks. Our pilot testing
showed that evaluators were unable to devise suitably representative tasks for this evaluation; thus
the experimenters constructed the actual tasks used in the experiment . Currently, selecting tasks
for complex interfaces such as this one requires substantial expertise; the technique realistically
could only be applied if the developers worked with a user interface specialist for that part of the
evaluation. Second, the walkthrough evaluators were only able to complete seven tasks during
their evaluation sessions, which consumed as much time as we could convince them to spend on
the evaluation . More tasks would be necessary to cover all of this interface (which supports a
particularly broad class of tasks) . Especially since the evaluators all found the application of the
technique to be tedious, it is not clear whether evaluators could be persuaded to put a sufficient
amount of time into this type of an analysis. All of these problems are being addressed by the
developers of cognitive walkthroughs, and future versions of the technique should minimize some
of these difficulties.

One advantage of the walkthrough technique that was noted by all of the walkthrough evaluators
was that the outputs of the walkthrough - enumerations of the knowledge that users are assumed
to have and the internal states of the system that are relevant to users' interaction with it -
would be of significant value to designers and other members of a development team, such as
documentation writers. This may be the most useful aspect of the walkthrough technique, and
needs to be critically evaluated.

Conclusions

Three different dimensions of an evaluation technique need to be considered when devising an
evaluation strategy for a particular application: who will do the evaluation, at what stage in the
development process will the evaluation be done, and what are the costs associated with a particular

- 2 1 1 -

evaluation technique. The four techniques considered in this experiment vary along all three of those
dimensions.

Access to individuals with particular skills and with time available to do the evaluation is
an important prerequisite for certain techniques. Heuristic evaluation and usability testing require
highly trained specialists; this is especially true for heuristic evaluation, where multiple independent
evaluations are required. Small organizations may not be able to afford the overhead of having
such specialists available. Cognitive walkthroughs and guidelines can be applied by non-specialists
who are familiar with the interface. Cognitive walkthroughs are best applied by the developers
themselves, whereas guidelines have the additional advantage that they can be applied by others
on the development team, e.g., technical writers.

Much time and money can be saved if problems are identified and corrected early in the develop
ment process. For the exact techniques used in this experiment , only cognitive walkthroughs could
be effectively applied to early prototypes . However, there are (significantly different) variations
of all of the other techniques that might have an impact on earlier stages of development ; further
research is needed to determine the actual effectiveness of those variants.

The cost of the analysis is another important consideration. We have already discussed the
relative amounts of time the various techniques take, under the benefit/cost analysis . Usability
testing is the only one of these techniques that requires significant additional out-of-pocket costs -
to pay subjects, to equip a testing lab, for videotapes, etc . However, there are other types of costs for
all the techniques. Fitting time for the analysis into a schedule is an important cost. Whether it is
better to save money by having developers do the evaluation , or whether it is more effective to have
someone who is not already overburdened with critical tasks, will depend on the particular project .
In addition , the overhead of learning a new technique should not be minimized. Finally, a cost
we did not directly consider is the cost of translating the problems found into changes to be made
in the interface. There are significant costs to communication between developers and evaluators;
aspects of the techniques that either increase the chances that the results of the evaluation will
be taken seriously or that decrease the communication costs (by making the developers and the
evaluators one and the same) can contribute positively to the eventual quality of the user interface
and lower the cost of achieving that quality.

The most important conclusion to draw from these results is that no one evaluation technique
is sufficient to find all the usability problems in a user interface of realistic complexity. None of the
techniques found all the relatively serious problems in this interface - in fact , the likelihood that
any particular problem would also be found by a different technique was about 10%. Thus, the
more different evaluation techniques that can be applied , given the constraints of the development
schedule, the more problems overall that will be found. We are continuing to attempt to characterize
the differences in the problems found by the different techniques; a better understanding of the
types of problems that each is best at identifying would be very helpful for persons trying to choose
among the different options.

References

1. Brown, C. M. Human-computer interface design guidelines. Norwood , N. J . : Ablex Publishing
Corporation, 1988 .

- 2 1 2 -

2. Hewlett-Packard Company, Corporate Human Factors Engineering. Soft Guide: Guidelines for
usable software. 1990.

3. Jeffries , R., Miller, J . R., Wharton, C., and Uyeda, K. M. User interface evaluation in the real
world: A comparison of four techniques. In Proceedings of CHI'91 (ACM Computer Human
Interaction) , New Orleans, April 28-May 3, 1991 .

4. Lewis, C . and Polson, P . Theory-based design for easily-learned interfaces. Human-Computer
Interaction, 1990, 5, 2/3, 191-220.

5. Lewis, C . , Polson, P., Wharton, C . , and Rieman, J. Testing a walkthrough methodology for
theory-based design of walk-up-and-use interfaces. In Proceedings of CHI'90 (ACM Computer
Human Interaction) , Seattle, Washington, April 1-5, 1990.

6. Nielsen, J. and Molich, R. Heuristic evaluation of user interfaces. In Proceedings of CHI'90
(ACM Computer Human Interaction) , Seattle, Washington, April 1-5, 1990.

7. Smith, S. 1. and Mosier, J . N . Guidelines for designing user interface software. Report
MTR- 10090, The MITRE Corporation, Bedford , Massachusetts, 1986.

- 2 1 3 -

Jeffries: User interface evaluation in the real world

-

2

User Interface Evaluation in the
Real World:

A Comparison of Four Techniques

Robin Jeffries

Hewlett-Packard Laboratories

Problems with user interface
evaluation

It doesn't find all the usabil ity problems

It happens late in the development cycle

It's expensive in time and resources

- 2 1 4 -

n3 HEWLETT
� PACKAAC

n3 HEWLETT
� PACKAAC

Jeffries: User interface evaluation in the real world

3

4

New evaluation techniques

Cognitive walkthroughs

Polson, Lewis, Wharton, & Riemann (1 990)

Guidelines

Smith & Mosler (1 986)

Brown (1988)

SoftGulde (1 990)

The methodologies

Cognitive walkthroughs

Guidelines: HP SoftGulde

ft3 HEWLETT
� PACKAAD

Heuristic evaluation: by multiple experienced
UI professionals

Usability testing: actual product usability test

- 2 1 5 -

ft3 HEWLETT
� PACKAAD

Jeffries: User interface evaluation in the real world

The evaluators

Cognitive walkthroughs
3 software engineers

Guidelines
3 software engineers

Heuristic evaluation
4 individuals with HCI backgrounds

Usabil ity testing
1 human factors professional

6 users tested; all experienced with PCs but not Unix

5

Total problems found
-

Heur Usa- Gulde-
Eval bility lines

Core 1 21 32 35

Underlying system 1 5 3 3

Evaluator error 7 0 0

Non-repeatable 6 3 0

Other 3 0 0

Total 1 52 38 38

Core, no dups 1 05 31 35

6

- 2 1 6 -

Cog
Walk

35

0

3

2

0

40

35

rr.. HEWLETT a!'lJIII PACKARD

Total

223

21

1 0

1 1

3

268

206

Iil HEWLETT
PACKARD

Jeffries: User interface evaluation in the real world

-

7

8

How core problems were found

Heur Usa-
Eva I bility

via 1 05 30
technique (1 00%) (97%)

side 1
effect (3%)

prior 0
experience

Severity analysis

Restricted to core problems

Seven raters

Four usability experts

Gulde- Cog
lines Walk

1 3 30
(37%) (86%)

8 5
(23%) (1 4%)

1 2 0
(34%)

Three HCI-knowledgeable software engineers

1 - 9 scale, anchored

rr.. HEWLETT
� PACKARD

Told to consider: Impact, frequency, n umber of
users Impacted

- 2 1 7 -

rr.. HEWLETT
� PACKARD

Jeffries: User interface evaluation in the real world

-

9

1 0

Severity results

Heur Usa- Gulde- �� Eval blllty lines

Mean problem severity

3.59 4.1 5 3.61 3.44

Number found by severity

most severe 28 1 8 1 2 9

least severe 52 2 1 1 1 0

Benefit/cost analysis

linear
exponential

Heur Usa- Gulde- Cog
Eval blllty lines Walk

Benefit: SUm of severity scores
433 133 1 30 1 20
355 175 205 81

Cost: Time spent on analysis (person-hours)
analysis time 20 199 1 7 27
technique training 5 10
HP-VUE training 15 64 6

Range of benefit/cost rat/os: severltyltlme
1 2-1 0 1 1 2-2 4-2

- 2 1 8 -

� HEWLETT I.!'L'..I PACKARD

� HEWLETT I.!'L'..I PACKARD

Jeffries: User interface evaluation in the real world

1 1

1 2

Advantages and disadvantages

Heuristic evaluation
+ Most cost-effective

+ Finds most problems In all eategorles

Requires UI expertise

Requires multiple experts

Usability testing
+ Finds serious and recurring problems

Requires UI expertise

Expensive

Misses consistency problems

1'1:. HEWLETT
� PACKARD

Advantages and disadvantages

Guidelines
+ Usable by developers

+ Finds recurring and general problems

Moderate cost, moderate benefit

Cognitive walkthroughs
+ Helps define users' goals and assumptions

Usable by developers, but needs task definition
methodology

Moderate cost, moderate benefit

Tedious

- 2 1 9 -

1'1:. HEWLETT
� PACKARg

Jeffries: User interface evaluation in the real world

1 3

Things to consider

Who will do the evaluation?

When will the evaluation be done?

What will the evaluation cost?

- 2 2 0 -

n3 HEWLETT
a!"aI PACKARD

Compiler S upport for Program Testing on MIMD

Architectures *

R. A. DeMilIo
E. W. Krauser
A. P. Mathur

Software Engineering Research Center
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907-2004

Abstract
Traditionally, available compilers have supported only two simple testing techniques, namely,

statement and branch coverage. However, during compilation, sufficient syntactic and semantic
information is available to provide support for more sophisticated testing techniques. This paper
presents a method to efficiently support program mutation via information and code generated
at compile-time. The method is also applicable to other white-box testing methods such as data
flow testing.

Mutation requires information attained by modifying the internal execution behavior of a
program under test. Since development of an adequate test data requires repeated program exe
cutions, extensive testing may be expensive and time-consuming. Support for program mutation
via a compiler-based approach, as opposed to a traditional interpreter or separate compilation
based approach, is expected to afford a significant increase in the execution speed and cost
effectiveness of a mutation-based software test. Past research indicates that this approach is
perhaps essential for the efficient application of hypercube machines (e.g., the N cube/2) to
mutation testing.

Keywords : Branch coverage, compilers, data flow testing, debugging, incremental program
modification, profiling, program mutation, software testing, statement coverage.

1 Introduction

This work is concerned with compiler-integrated support for program mutation [2] . Mutation re
quires information attained by modifying the internal execution behavior of a program P under
test. Faults are injected into P that are intended to model simple errors possibly introduced by
programmers using a specific programming language L. Each fault , or mutation, is obtained by a
single point, syntactically correct change to the original program P. Examples of faults induced
include, variable replacement, e.g. x = x + y replaced by x = y + y and operator replacement,
e.g. x = x + 1 replaced by x = x - 1 . Each program resulting from such a change to P is called
a mutant program. The goal of a mutation tester is to select test data such that the output of
P is distinguished from the output of all mutant programs which are not equivalent to P. Such

'This research was supported, in part, by a grant from the Software Engineering Research Center at Purdue
University, a National Science Foundation Industry/University Cooperative Research Center (NSF Grant No. ECD-
8913133).

- 2 2 1 -

test data is deemed to be 'mutation adequate' and regarded as offering very strong evidence that
a well chosen set of simple errors do not exist in P. More importantly, an established theoretical
framework and large body of empirical evidence suggest that mutation adequate test data also
reveals a much larger set of complex errors in P [1] .

Tools currently exist that support program mutation via an interpreter-based execution envi
ronment [5]. However, they execute mutant programs much slower than if the mutants were to
consist of native machine code. Therefore, testing tools based on current approach are not attrac
tive as a means to test any reasonably large program (e.g. consisting of more than 10,000 lines of
code) . We present a method that permits efficient support for program mutation via information
and code generated at compile-time, hence, we call this a compiler-integrated testing approach,
hereafter referred to as CIT.

The remainder of this paper is organized as follows. The next section examines existing tools
and past research into mutation to motivate the need for CIT for mutation testing. The need for for
such an approach in a parallel environment is also stressed in this section. Section 3 describes patch
generation, a patch being a sequence of object instructions. The organization and representation of
patches is explained in Section 4. The process by which the patch file ism constructed is described
in Section 7. Applicability of CIT to other testing methods is discussed in Section 8. Section 9
summarizes our work and outlines plans for future work.

2 Motivation

To understand the need for CIT for mutation, consider the approach of Mothra [5], an existing
mutation-based FORTRAN 77 testing environment (see Figure 1) . The program P under test is
input to the Mothra system and translated to an internal representation Pint . Mutants of P are
generated by inducing changes into Pint required to model each desired fault. Finally, each mutant
is first constructed by applying the appropriate changes, or edits, to Pint and then interpretively
executed on test data until either, (1) its output is distinguished from that of P, or, (2) it has been
executed on the entire set of test data. An undistinguished mutant program is considered to be live,
while a distinguished mutant is considered to be dead and a mutant that cannot be distinguished
is considered to be equivalent. Once so labeled, dead and equivalent mutants no longer participate
in the software test. The test data set is continuously augmented until either, (1) all mutants have
been labeled dead or equivalent, or, (2) a threshold percentage of dead mutants has been reached
Th' h h ld k t t' . d dead mutants IS t res 0 , nown as a mu a IOn score, IS compute as # ' t t # . I t t t ' Ive mu an s - equlva en mu an s

Empirical evidence has shown mutation to be an effective testing technique [1] . However, one
can see that any mutation-based testing environment must be faced with the cost of executing a
large number of mutant programs 1 . Consider trityp [14] , a 29 line triangle identification program
written in FORTRAN 77. When mutated, trityp generates a total of 970 mutants programs, each
of of which must be executed in an effort to distinguish their output from that of the original. One
automatic test data generator produced 420 test cases for the trityp program [14] . In the worst
case, all mutants and the original program must be executed with respect to all test data, a total
of 407, 820 program executions! In general, a typical mutation software test does not realize this
worst case scenario. For example, many mutants are very unstable and are easily distinguished. As
mutants are killed or asserted to be equivalent, there is no need to execute them with respect to
subsequent test data. This often significantly reduces the required number of program executions.
However, if even 10% of these executions need be managed, the resulting computational load

I The computational complexity of mutation is polynomial in the number of distinct identifiers referenced in the
program. A mathematical analysis of this complexity appears in [2].

- 2 2 2 -

Test
Cases

Source Internal � Program
Form Output Program

.. ..
..

.. ..

Mutant Mutant
Internal Program
Forms Outputs

Figure 1 : An interpreter-based approach to mutation testing.

becomes time consuming and costly on traditional sequential machines.
In addition to being strapped with a CPU-intensive task, Mothra suffers from the inherent

slow execution speed of an interpretive execution environment. A straightforward solution to
improve slow execution speed is to replace interpretive execution by execution of compiled code,
as depicted in Figure 2. Programs execute faster and retain their original operational behavior
(e.g., timing characteristics) while executing in their intended operational environment. However,
this approach has a disadvantage. In replacing interpretive execution by machine execution, the
number of required compilations has increased. That is, before each mutant can be executed, it
must be transformed into executable object code via the application of a compiler, assembler, and
linker/loader. This introduces significant overhead into the testing process.

Source
Program

Source
Program

Mutant
Programs

Executable
Program

..

Executable
Mutant

Programs

Test
Cases

Program
Output

Mutant
Program
Outputs

Figure 2: A separate compilation approach to program mutation.

..
..

Furthermore, compiling each mutant individually suffers from redundancy because, by defini
tion, each mutant is very similar to the program under test. This observation leads directly to
CIT as illustrated in Figure 3 . The program P under test is input to the compiler which generates

- 2 2 3 -

Source
Program

Generate
Mutants

Host Processor

Compile Schedule
Mutants

Executable
Mutant

Programs

Hypercube

Figure 4: The organization of mutant program execution in pMothra.

Table 1 : The symbols relevant to the pMothra experimental model.

I Symbol I Description

Ac Mean compilation time of a mutant program.
1 Time to load a mutant program for execution.

At Mean mutant execution time.

Ao Mean mutant output comparison time.
t At + Ao
s Mean service time for a test case.

1J Mean number of test cases required to kill a mutant.
Np N umber of processors dedicated to mutant program execution.

improve processor utilization for the problematic class of programs identified by Choi. The result
is intended to provide a platform for the construction of a new pMothra tool that, as indicated
by experimental results, will provide a significant improvement in the cost-effectiveness of program
mutation. Below we discuss the specifics of Choi's results in detail and the nature of the compiler
support required to effectively apply MIMD architectures to program mutation.

2 . 1 . 1 Choi's Results

Consider the separate compilation approach to mutant program execution depicted in Figure 2.
Assume that the target machine is multi-node hypercube. Then a mutation-based testing tool can
be constructed to run on a host processor and control the execution of mutant programs on the
hypercube. Each mutant is generated by a source level edit to the program under test, compiled,
and scheduled for execution by the host processor. When its scheduled node becomes available on
the hypercube, the mutant is sent to the hypercube to be loaded, executed and compared with the
output of the program under test. Once scheduled, mutants remain at their assigned node and
continue to execute until killed or all test data has been exhausted. This is an attempt to maintain
high processor utilization and is consistent with the basic design of pMothra. Although, Choi has
proposed a design for a somewhat more elaborate pMothra system with superior capabilities to
respond to the dynamic scheduling requirements of such a system. Figure 4 depicts the pMothra
scenario while Table 1 defines a set of symbols to be referenced in the following discussion.

Choi reports near linear speedups for programs whose mutants require relatively long execution
times as compared to the time it takes to compile and load them for execution. This result ,

- 2 2 4 -

depicted in [3] , makes perfect sense and is explained as follows. Assume the first mutant Qo has
been compiled, loaded, and is about to commence execution on node no. Based on the definitions
in Table 1 , on the average this requires >'c + I time, the sum of the mean time to compile and load
a mutant. At this point , the other (Np - 1) nodes remain idle, awaiting a mutant for execution.
The mean time node no will remain busy executing mutant Qo is (t + s) x "l, the sum of the mean
execution and service times multiplied by the mean number of executions before the mutant is
killed. In order to attain high processor utilization by servicing the (Np - 1) idle nodes, (Np - 1)
mutants must be readied for execution before mutant Qo is killed. Also, an additional mutant must
be ready to replace Qo at node no. Therefore, if speedup is to be attained, the mean compile-time
and mean load-time for mutant programs are subject to the following constraint:

>. 1 « t + s) X "l
c + - N p

(1)

If this constraint i s not met, processor utilization falls off because there are idle nodes waiting
for mutant programs to be readied for execution. As shown in [3] , this results in poo� speedup and
cos t-effecti veness .

Unfortunately, this is the case for a large class of programs. Consider TEX, the text formatting
program developed by Knuth[10, 1 1] . TEX consists of about 5, 000 mutatable source lines of Pascal.
At most installations, the executable version of this Pascalprogram is "built" by first preprocessing
the program into C code and then compiling it normally, a process that takes approximately 5
minutes on a SUN SPARCstation l . Yet, a typical test case for TEX may only require a few seconds
to execute. Therefore, the mean total execution time for what is potentially a very large number of
mutants is likely to be less than the typical build-time. In addition, the build-time does not include
the overhead associated with communicating all of these mutants to their destination nodes and
loading them for execution once they arrive.

A final discouraging conclusion to be drawn from Choi's results is that attempting to exploit
the modularity of a program and conduct unit testing, a typical scheme to make a software test
manageable, may not help. That is, Equation 1 may well not hold in a mutation-based testing
environment that supports unit testing because, although the mean compilation and load time may
be reduced, so is the mean execution time.

3 Solution Techniques

The results presented by Choi lead directly to the CIT as illustrated in Figure 3. The main goal is to
ensure that Equation 1 is always satisfied. This is achieved by a two-phase solution: the generation
of program patches at compile-time, coupled with subsequent selective patch application when the
software is under test . Each of these phases is briefly described below.

3 .1 Patch Generation in CIT

The program under test is input to the compiler which generates two outputs: an executable
object code image and a set of program patches. Each program patch consists of one or more
code sequences and a corresponding set of editing operations that direct how the code sequences
are to be applied to the compiler's resultant executable. When a program patch is applied to
the executable, the result is a new executable with possibly different semantics. The focus of this
research has been to construct program patches such that when applied, the resulting executable
is that of mutant program. The approach effectively folds the compilation of all mutant programs

- 2 2 5 -

(a)

(b)

Source
Program

Source
Program

Executable
Program

Executable
Program

Patch
Library

Figure 5: (a) Traditional compilation versus (b) compilation in CIT.

into one compilation, encapsulating the "diffs" of each mutant and the program under test in the
form of a patch. That is, only the underlying machine instructions that differ between the original
and its mutant programs are compiled. Figure 5 depicts the compile-time program patch generation
process.

3.2 Selective Program Code Patching

During testing, when mutants are to be executed, program patches are selectively applied to the
compiler's resultant executable in order to obtain each mutant program. Each time a patch is
applied to the program under test, a mutant program is obtained, as is depicted in Figure 6.

The application of program patches occurs via the long-used technique of code patching. An
arbitrary sequence of instructions are appended to the object image of an executable program.
Then, jump instructions are overwritten into the instruction stream of the executable in order to
redirect its thread of execution at run-time and execute the instructions appended to the end of
its image. In this way, the desired sequence of instructions appear to have been inserted directly
into the instruction stream of the executable. When each prog;ram patch is generated such that it

- 2 2 6 -

Executable
Program

a = b + c

Patch
Library

........
b = b + c

Patched
Executable

Program

----...
..

.----" a = b + c

� b = b + c

Figure 6: Program patch application to construct mutant programs during the adequacy measure
ment phase.

encapsulates the differences between the executable under test and its mutants, then the application
of each patch yields an executable mutant program. Call these patches mutant patches.

The application of mutant patches to the compiler's resultant executable is an efficient process
with little overhead. This is because effort has been expended to make sure that all references within
a mutant patch are resolved with respect to the symbol table of the program under test before
application. This precludes the need for dynamic linking and makes patch application equivalent
to a simple set of bit stream edits on the executable file.

4 Patch Organization & Representation

Each source level program mutation requires that one or more new sequences of machine instructions
be installed in the executable image P of a program. Therefore, each program patch consists of
a sequence of parameterized operations on an executable program image. This sequence has the
form:

(OP! , . . . , OPn) ,

where OPi is either a data directive or an editing operator associated with a specific patch
instruction sequence, denoted by P lSi.

During compilation, as each patch M is generated, its instruction sequences do not become part
of those for P. Rather, each P lSi associated with M is stored in a patch library, which is designed
to provide selective access to M during program testing. During a subsequent test data adequacy
measurement phase of program mutation, the sequence of operations within M are interpreted by a
patch applicator to obtain an executable mutant program PM. Directives to the patch applicator
allow data to be associated with each P lSi in M, while editing operators install each P lSi for
the program mutation induced by M within the instruction stream of P. This is achieved by
overwriting appropriate locations within P with jump instructions. The effect is to redirect the
run-time thread of execution in P and include each new P lSi in M, yielding the behavior of PM.

- 2 2 7 -

Each P lSi applied to P is installed by the patch applicator in the form of a patch instruction
record, denoted by PlRi. The set of all PlRi installed in P, along with any static data they
require comprise the patch segment, denoted by PatchSeg. PatchSeg is a contiguous region of
space within P whose size and location are determined by the patch applicator. PatchSeg is
allocated prior to the installation of M and must be of sufficient size to store any static data and
each P lSi for M. In addition, PatchS eg must be installed in a location that does not invalidate any
relative, relocatable, or symbolic addresses within the instructions of P. Once installed, the patch
applicator initializes the global variable PatchSegPtr within P to the address at which PatchSeg
was installed within P.

5 Patch Instruction Sequences

Each sequence of operations for a given patch M contains one primary instruction sequence and
zero or more secondary instruction sequences. A primary instruction sequence is that which
arises directly from the parse tree transformation that models a given mutation within the source
program. Secondary instruction sequences are comprised of additional instructions required to
ensure the correctness of the primary instruction sequence. Each secondary instruction sequence
must be executed at a location within P other than that where the primary instruction sequence
occurs, and therefore cannot be included within the primary instruction sequence. Secondary
instruction sequences are generated in order to perform the following tasks:

• Allocate and deallocate space for temporary variables within the activation record of a
function f to which M has been applied;

• Reset loop- counter variables within M when the iterative construct to which M has been
applied is exited.

6 Associating Patches with Data

Each patch instruction sequence may optionally be associated with static and/or dynamic data.
Static data required by any patch is allocated and initialized to zero by the patch applicator within
a contiguous region at the beginning of PatchSeg. Such data is accessible to any patch applied
to P. Dynamic data for any patch M is allocated within the activation record of the function f
to which M is applied. Such data cannot solely be allocated by the patch applicator. Rather, the
calling and return sequences for f are patched to respectively allocate and deallocate the extra
temporary variables required for M at run-time. This necessitates that the compiler generate at
least three instruction sequences for any patch requiring dynamic data, one to affect the mutation
and two to allocate and deallocate temporary variables. Dynamic patch data is accessible to the
instruction sequences of any patch applied to f, but not by any instruction sequences that are
applied outside of f.

6.1 Data Requirements

Dynamic data may be required by any patch corresponding to a operator mutation or variable
mutation because evaluation of a mutated expression may induce the need for compiler-generated
temporary variables not required in evaluating the original expression. This situation may arise for
two reasons:

- 2 2 8 -

• Type conversions. Types are ignored during Scalar Variable Replacement. Therefore,
replacement of variable v by variable v' having a higher-order type may necessitate one or
more type conversions within an expression that required no such conversions in the original
program. Likewise, operator replacement mutations may, depending on the operands,
cause conversion of the value of an operand where no such type conversion was required in
the original program. Each type conversion requires a new temporary variable within the
intermediate representation of the mutated expression.

• Computation of offsets. All variable mutations can necessitate the computation of offsets
not required within the original program. For instance, let v be a variable and s be a structure
defined as:

int Vj struct { int Uj int Vj } Sj
Then replacing variable v by S.V requires a new subexpression to compute the address of S.V
with respect to the address of s. Each such subexpression requires a new temporary variable
within the intermediate representation of the mutated expression.

Temporary variables store new intermediate states of computation that arise from a program
mutation and for which no unused registers or temporary variables are currently available. For
recursive languages like C such data must be allocated on the run-time stack because several
invocations of a patched construct may be active at the same time, each requiring its own temporary
variables. For a non-recursive language, all temporary variables may be allocated statically within
PatchSeg.

Patches corresponding to coverage mutants 2 require both static and dynamic data. The
static data required is comprised of data structures that record the satisfaction of coverage criteria
detected by a given patch and may be shared by all such patches for a program. For example, the
patch for a Statement Trap mutant need only record that a given statement has been executed
by setting a bit in an static array, where each bit represents a statement in the program. The
dynamic data required is comprised of temporary variables into which expressions are evaluated or
loop-counter variables that record which iteration of a given looping-construct is currently active.

7 The Making of the Patch File

Because compilation is a translation process, at some point in time, analogs of each patch must
exist at the parse tree, intermediate code, assembly code, and object code levels . In this section,
we provide and overview of how this process is managed, resulting in the construction of an object
patch file. The remainder of the chapter then discusses in detail precisely how patches are managed
and refined during each phase of compilation, and how they are tailored to support C program
mutations.

7.1 File & Unit Entries

The patch database is organized in a manner that allows program patches to be accessed by file,
subprogram unit (Le., function), type, as well as the line and column in which they occur in the
source program. Each patch also permits linkage to an external, application-specific database via
a primary key stored within the patch. The patch applicator locates the sequences of instructions
corresponding to each patch by looking up the labels that delimit each patch in the symbol table

2 A coverage mutant is a statement mutation, such as the Statement Trap operator, that detects the satisfaction
of various coverage criteria during program execution.

- 2 2 9 -

Parse Tree Representation of f

PatchList(f)

PatchList(N)

Intermediate
Patch1

Intermediate Representation of f

(i) $1 = b+c

(i+l) a = $1

Intermediate
Patch n

Figure 7 : Organization of what has been produced by a patch generating compiler following the
intermediate code generation phase.

of the patch library. Patch instruction sequences are then accessed by extracting that region of the
patch library indicated by the resulting address interval.

Entries in the patch database are first allocated on a function-by-function basis during parsing.
As each source code file within a program is parsed, one file entry, as well as one unit entry per
function defined in the file, is created. The file entry maintains pointers delimiting the sequence
of contiguous unit entries corresponding to its underlying source file, while each unit entry stores
a pointer to its enveloping file entry. This organization provides for selective patch access in the
presence of separate compilation, where a set of patch files , each resulting from the compilation of
a distinct source file, are merged to yield a composite patch file.

7.2 Patch Entries

During intermediate code generation, as the set of mutants for the current function I are identified,
one patch entry is created per mutant generated. Each such patch entry in the patch database is
assigned a type, source location, and pointer recording its enveloping unit entry. As each sequence of
patch operations and its corresponding sequences of intermediate code instructions, are generated,
they are assigned to the patch entry. Each patch entry is then associated with both a global
list of patches for I, denoted by PatchList(J), and the parse tree node N , where N roots the
domain entity for which the patch was generated. In addition, the correspondence between the
sequence of intermediate code instructions generated for each syntactic entity in I and the parse
tree is maintained by associating a tuple Insnlnterval(N) with each parse tree node N . This
organization results in a mapping from intermediate code instructions in I to domain entities and
their corresponding patches in the parse tree. Finally, once all patches for I have been generated, the
unit entry created for I during parsing is updated to store pointers delimiting its corresponding
sequence of contiguous patch entries created during patch generation. Figure 7 illustrates the
organization of what has been produced by a patch generating compiler following the intermediate
code generation phase.

- 2 30 -

Parse Tree Representation of f Assembly Representation of f

PatchList(fJ

I nsnI nterval(N)
(i,i+2) �

(i)

+ (i,i+1) (i+1)

c (i+2)

MOV b,RO

ADD c,RO

MOV RO,a

InsnStates(A)

Assembly
Patch 1

Assembly
Patch n

Figure 8: Organization of what has been produced by a patch generating compiler following the
assembly code generation phase.

7.3 Assembly Code Patches

During assembly code generation, the assembly representation of f is generated first, although the
resulting instructions are not immediately emitted to the target assembly file. As each assembly
instruction A is produced, the state of the machine, as perceived by the compiler, before and after
generation of A is recorded in lnsnStates(A). The correspondence between the assembly code
instructions generated for each syntactic entity in f and the parse tree is maintained by refining
the tuple lnsnlnterval(N), produced during intermediate code generation. Following translation
of the last intermediate code instruction for the subtree rooted at N, this tuple is updated to
reflect the sequences of instructions within the assembly representation of f, rather than within
the intermediate representation of f. Once the entire assembly representation of f is available and
its mapping onto domain entities within the parse tree known, PatchList(J) is traversed and each
patch produced during intermediate code generation is translated to assembly instructions, in turn.

Let domain entity E be rooted at node N where lnsnlnterval(N) = (Ai, AI), for initial and
final assembly code instructions Ai and AI, respectively. Generating an assembly patch instruction
sequence P lSi for patch M replacing domain entity E requires restoring the machine state perceived
by the compiler to that before Ai was generated, generating P lSi, and generating state restoring
instructions to restore the machine state prior to execution of AI ' All assembly instruction
sequences generated for M are then delimited by patch instruction labels and emitted to the patch
library. Similarly, patch target labels are generated and inserted into the assembly representation
for f at the locations to which the editing operators of M are to be applied. Finally, each editing
operator within M is updated to include the patch target and instruction labels that are now known
and may be bound to patch M. Figure 8 illustrates the organization of what has been produced by
a patch generating compiler following the assembly code generation phase.

- 2 3 1 -

Coverage statistics
P

PE
2

. Prepare object module and broadcast

. Send test caases

.Collect coverage data and merge

Figure 9: Data flow testing on an MIMD machine.

8 Applicability to Other Testing Methods

Though CIT is described in this paper as i t i s applied to mutation testing, i t is indeed appl icable to
other testing methods also. In fact we claim that any testing method that requires a modification
to the program being tested can benefit from CIT. To illustrate how, below we provide an example
of applying CIT to i mprove the performance of data flow testing.

Tools that support data flow testing, e.g. ATAC [7], instrument the program under test. When
('xecuted , the instrumented program records coverage data, e.g decision or p-use coverage. However,
the instrumentation causes a reduction i n the speed of program execution. \Ve have observed speed
reductions ranging from two to thirty times when using ATAC. The exact amount of reduction
depends on several characteristics of the program being tested, e.g. I/O or CPU hound . It is ,
however, possible to use an MIMD machine, such as Ncube's Ncube/2, to speedup the execution
of the instrumented program.

Figure 9 exemplifies how the CIT approach can be used to organize the instrumentation of
the program P under test to obtain data flow coverage. Consider a machine with two processing
dements denoted by PEl and PE2 in the figure. The PE's can communicate with a host as well as
amongst themselves.

Let P consist of four functions It , 12 , 13, and 14 . If a data flow testing tool for sequential

- 2 3 2 -

machines, such as ATAC, is used to instrument P then it would instrument all the four functions
to obtain data flow coverage. Let pI denote such an instrumented program. It is now possible to
broadcast the object version P� of pI to each of the PE's for execution on different test cases. Note
that due to instrumentation, each P� will execute significantly slower than Po, the object version
of P.

Let us carry out a simplified time analysis of this approach. If T denotes the time to execute
P and 6 the instrumentation overhead associated with each function in P, then the total time to
execute PI on 2 PE's and 2 test cases is T + 46 . Note that the execution of pI on each test case
can be carried out in parallel. Here we have assumed that each function in P is executed exactly
once on each test case. Clearly, this approach yields a speed gain of 2 over the approach that uses
a sequential machine.

The instrumentation of P can be carried out by a separate testing tool or by the compiler itself.
Using a compiler that has such instrumentation capability avoids having to build or buy a separate
tool. Further, a separate tool would perform activities such as parsing and semantic analysis to
be able to do the instrumentation. The compiler in any case performs these activities. Hence,
using a compiler for this purpose avoids having to perform program analysis twice. Note that the
advantages of the CIT approach we mention here are applicable to both sequential and parallel
machines. This , however, is not true for mutation testing as was explained in Section 2. 1 . 1 .

9 Summary and Future Work

In this paper we have presented a method to integrate support for program mutation and coverage
based testing methods into a compiler. As program mutations can be modeled as localized pro
gram edits, this method is believed to be general enough to also allow support for other software
development, testing, and maintenance activities such as debugging, data flow testing, incremental
program modification, and profiling. Finally, previous research suggests that this approach ap
pears to be essential for the efficient application of hypercube machines to program mutation. Such
an approach may be the only feasible method of testing large commercial software systems in a
mutation-based testing environment.

We are currently building a test environment based on CIT. At the heart of this environment
is the GNU C compiler which has been modified to generate patches as described in this paper.
In addition to the compiler, the environment consists of a patch applicator, test case editor and
manager, test display manager, and a data base for storing the status of the software test. The
modified compiler is also being interfaced with pMothra/ [4] , a tool for scheduling mutants on the
Ncube/2 hypercube.

It is believed that CIT will provide a significant increase in the efficiency of several existing
testing tools and allow program mutation to be effectively employed to test commercial software
systems. This hypothesis has yet to be empirically substantiated. However the approach seems
to be innately appealing to the software tester because it also enhances the reliability of a soft
ware test. The program under test retains much of its original operational behavior (e.g. , timing
characteristics, while executing in its intended operational environment.

References

[1] T. A. Budd. Mutation Analysis of Program Test Data. PhD thesis, 1980.

- 2 3 3 -

[2] Timothy Budd, R. A. DeMillo, R. J . Lipton, and F. G. Sayward. Mutation Analysis. Technical
report, Department of Computer Science, Yale University, April 1979. Subsequently released
in expanded form as Technical Report GIT-ICS-79/08, Georgia Institute of Technology, 1979.

[3] B. Choi. Software Testing Using High Performance Computers. PhD thesis, 1990.

[4] B. Choi, A. P. Mathur, and B. Pattison. pMothra: Scheduling Mutants for Execution on a Hy
percube. In Proceedings of the Third Software Testing, Analysis, and Verification Symposium,
Key West, Florida, December 1989.

[5] R. A. DeMillo, D. S. Guindi, K. S. King, W. M. McCracken, and A. J. Offutt . An Extended
Overview of the MOTHRA Mutation System. In Proceedings of the Second Workshop on
Software Testing, Verification and Analysis, Banff, Alberta, Canada, July 1988.

[6] R. A. DeMillo, E. W. Krauser, and A. P. Mathur. Using the Hypercube for Reliable Testing
of Large Software. Technical Report SERC-TR-24-P, Software Engineering. Research Center,
Purdue University.

[7] J . R. Horgan and S. A. London. ATAC - Automatic Test Coverage Analysis for C Programs.
Technical report, Bell Communications Research, July 1990.

[8] Inmos Corporation. Occam 2 Manual, 1985.

[9] Inmos Corporation. Reference Manual and Product Data: Trasnputer, 1985.

[10] D. E. Knuth. TEiX: The Program. Addison-Wesley, Reading, MA, 1986.

[11] D. E. Knuth. The TEiX Book. Addison-Wesley, Reading, MA, 1987.

[12] E. W. Krauser, A. P. Mathur, and V. Rego. High Performance Testing on SIMD Machines.
IEEE Transactions on Software Engineering, 17(5), May 1991.

[13] Aditya P. Mathur and E. W. Krauser. Modeling Mutation On a Vector Processor. In Pro
ceedings of the 10th International Conference on Software Engineering, Singapore, April 1988.
Previously released as Technical Report GIT-SERC-87/07, Georgia Institute of Technology,
1987.

[14] A. J . Offutt. Automatic Test Data Generation. PhD thesis, Georgia Institute of Technology,
1988. Jeff's Thesis.

- 2 34 -

Factors That Affect Software Testability

Jeffrey M. Voas
Systems Architecture Branch
Information Systems Division

Mail Stop 478
NASA Langley Research Center

Hampton, VA 23665
(804) 864-8136

jrnvoas@phoebus.larc.nasa.gov

Abstract: Software faults that infrequently affect software 's output are dangerous. When
a software fault causes frequent software failures, testing is likely to reveal the fault before
the software is released; when the fault remains undetected during testing, it can cause
disaster after the software is installed. A technique for predicting whether a particular
piece of software is likely to reveal faults within itself during testing is found in [Voas91 b}.
A piece of software that is likely to reveal faults within itself during testing is said to have
high testability. A piece of software that is not likely to reveal faults within itself during
testing is said to have low testability. It is preferable to design software with higher
testabilities from the outset, i. e., create software with as high of a degree of testability
as possible to avoid the problems of having undetected faults that are associated with low
testability.

Information loss is a phenomenon that occurs during program execution that increases
the likelihood that a fault will remain undetected. In this paper, I identify two broad
classes of information loss, define them, and suggest ways of predicting the potential for
information loss to occur. We do this in order to decrease the likelihood that faults will
remain undetected during testing.

Index Terms: Testability, Domain/Range Ratio (DRR) , random black-box testing,
information loss, information hiding, software design, specification metric.

Jeffrey Voas is working as a National Research Council resident research associate at the
National Aeronautics and Space Administration's Langley Research Center. His research
interests include software testing, studying data state error propagation, debugging tech
niques, and design techniques for improving software testability. Voas received a BS in
computer engineering from Tulane University and a MS and PhD in computer science
from the College of William and Mary.

- 2 3 5 -

Factors That Affect Software Testability

1 Introduction

This paper exposes factors that I have observed which affect program testabilities . Testability
of a program is a prediction of the tendency for failures to be observed during random black
box testing when faults are present [VoAs91b] . A program is said to have high testability
if it tends to expose faults during random black-box testing, producing failures for most of
the inputs that execute a fault. A program has low testability if it tends to protect faults
from detection during random black-box testing, producing correct output for most inputs
that execute a fault . In this paper, I purposely avoid a formal definition for fault because
of the difficulty that occurs when trying to uniquely identifying faults, and instead use the
intuitive notion of the term fault.

Random black-box testing is a software testing strategy in which inputs are chosen at
random consistent with a particular input distribution; during this selection process, the
program is treated as a black-box and is never viewed as the inputs are chosen. An input
distribution is the distribution of probabilities that elements of the domain are selected.
Once inputs are selected, the program is then executed on these inputs and the outputs are
compared against the correct outputs .

Sensitivity analysis [VoAs91 b] is a dynamic method that has been developed for predict
ing program testabilities. One characteristic of a program that must be predicted before
sensitivity analysis is performed is whether the program is likely to propagate data state
errors (if they are created) during execution. Propagation analysis [VoAs91b, VOAs91c] is a
dynamic technique used for predicting this characteristic. If the results of propagation anal
ysis suggest that the cancellation of data state errors is likely to occur if data state errors
are created, then sensitivity analysis produces results predicting a lower testability than if
cancellation of data state errors were unlikely to occur.

When all of the data state errors that are created during an execution are cancelled,
program failure will not occur. If this occurs repeatedly, this produces an inflated confidence
that the software is correct. It might seem desirable for a correct output to be produced
regardless of how the program arrived at the correct output. This is the justification for
fault-tolerant software. But for critical software, any undetected fault is undesirable, even
if the data state error it produces is frequently cancelled. For critical software, we prefer
correct output from correct programs, not correct output from incorrect programs. By the
fact the program is incorrect, there exists at least one input on which program failure will
occur, and by the fact the software is critical, the potential for a loss-of-life exists.

This paper presents empirical observations concerning a phenomenon that occurs during
program execution; this phenomenon suggests the likelihood of data state error cancellation

- 2 3 6 -

.----------------------- - - --- --- - --

occurring. The degree to which this phenomenon occurs can be quantified by static program
analysis, inspection of a specification, or both. Note that this phenomenon can be quantified
statically, which is far less expensive to perform than the dynamic propagation analysis. Thus
through static program analysis or specification inspection, insight is acquired concerning the
likelihood that data state error cancellation will occur. And this gives insight into whether
faults will remain undetected during testing, i.e. , program testability.

I term this phenomenon "information loss." Information loss occurs when internal infor
mation computed by the program during execution is not communicated in the program's
output. Information loss increases the potential for the cancellation of data state errors and
this decreases software testability. As mentioned, information loss can be observed by both
static program analysis and inspection of a specification. I divide information loss into two
broad classes: implicit information loss and explicit information loss. Static program anal
ysis is used to quantify the degree of explicit information loss, and specification inspection
quantifies the degree of implicit information loss.

Explicit information loss occurs when variables are not validated either during execution
(by a self-test) or at execution termination as output. The occurrence of explicit information
loss can be observed using a technique such as static data flow analysis [KOREL87] . Explicit
information loss frequently occurs as a result of information hiding [P ARNAS72] , however there
are other factors that can contribute to it. Information hiding is a design philosophy that
does not allow information to leave modules that could potentially be misused by other
modules. Information hiding is a good design philosophy; however, it is not necessarily good
for testability, because the data in the local variables is lost upon exiting a module. In
Section 3.3, I propose a scheme where information hiding is kept as a part of the software
design philosophy while its negative effect , explicit information loss, is lessened.

Implicit information loss occurs when two or more different incoming parameters are
presented to a user-defined function or a built-in operator and produce the same outgoing
parameter. An example is the integer division computation a := a div 2 . In the com
putation a := a + 1 , there is no implicit information loss. In these two examples, the
potential for implicit information loss occurring is observed by statically analyzing the code.
If a specification states that ten floating-point variables are input to an implementation, and
2 boolean variables contain the implementation's output , then we know that implicit infor
mation loss will occur in an implementation of this specification. Thus specifications may
also hint at some degree of the implicit information loss that will occur if they are written
with enough information concerning their domains and ranges.

2 Information Loss

I have proposed two broad classes of information loss. The following pseudo-code example
contains both types of information loss and demonstrates how we can statically observe
where these two types of information loss occur. For this example, I assume inputs a and c
have effectively infinite domains, and z has an effectively infinite domain immediately before
the statement z : = z mod 23 is executed.

Module x (in-parameter a : real , in-parameter c
out-parameter b : boolean)

- 2 3 7 -

real ,

local-parameters
z integer
y : boolean

Beginning of Body

z : - z mod 23

b : = f (a . c . y . z)
End of Body

With the assumption of effectively infinite domains for a, c, and z, module x suffers from
both implicit information loss and explicit information loss. Explicit information loss occurs
in x as a result of its 2 local variables whose values are not output nor passed out . Implicit
information loss can be observed in several ways. The first way is the impossibility of
taking b's value at module termination and discovering the values of a and c that were
originally passed in; infinitely many combinations ·of a and c map to a particular b. This
potentially could have been observed from the specification of the module. The second way
implicit information loss occurs is at the statement containing the mod operator; implicit
information loss occurs because of the assumption that z has an effectively infinite domain.
Many values of z map to a particular value in [0 . . 22] after the computation.

2 . 1 Implicit Information Loss

Clues suggesting some degree of the implicit information loss that may occur during execu
tion may be visible from the program's specification; I use a specification metric termed the
"domain/range ratio" for suggesting a degree of implicit information loss [VoAs91a] . Recall
that in the example we were also able to observe implicit information loss by code inspec
tion. Therefore, a specification's domain/range ratio only suggests a portion of the implicit
information loss that may occur; code inspection can give additional information concerning
implicit information loss.

The domain/range ratio (DRR) of a specification is the ratio between the cardinality of
the domain of the specification to the cardinality of the range of the specification. I denote a
DRR by a ; /3, where a is the cardinality of the domain, and /3 is the cardinality of the range.
As previously stated, this ratio will not always be visible from a specification. After all, there
are specifications whose ranges are not known until programs are written to implement the
specifications. And if the program is incorrect, an incorrect DRR will probably be calculated.

DRRs roughly predict a degree of implicit information loss. Generally as the DRR
increases for a specification, the potential for implicit information loss occurring within the
implementation increases. When a is greater than /3, previous research has suggested that
faults are more likely to remain undetected (if any exist) during testing than when a = f3
[VoAs91a] .

- 2 3 8 -

alb a div b

Figure 1 : There are four potential values for variable a and four potential values for variable
b, for a total of 16 pairs of potential inputs. Notice that for these 16 inputs, integer division
always produces the same output (1) , and real division produces 16 unique outputs.

The granularity of a specification (or functional description) for which we can determine
a DRR varies. For example, DRRs exist for unary operators, binary operators, complex
expressions, subspecifications, or specifications. (By subspecification, I mean a specification
for what will become a module.) In the example, the DRR of subspecification x is (OOR)2 : 2
and 001 : 23 for the mod operator. In this paper, the symbol 001 denotes the cardinality of
the integers, and OOR denotes the cardinality of the reals.

For certain specifications, the inputs can be found from the outputs by inverting the
specification. For example, for an infinite domain, the specification f(x) = 2x has only one
possible input x for any output f(x). Other specifications, for example f(x) = tan(x) , can
have many different x values that result in an identical f(x) ; i .e. , tan-1 (x) is not a one
to-one function. All inverted specifications that do not produce exactly one element of the
domain for each element of the range lose information that uniquely identifies the input given
an output. Restated, many-to-one specifications mandate a loss of information; one-to-one
specifications do not. This is another way of viewing implicit information loss.

When implicit information loss occurs, you run a risk that the lost information may have
included evidence of incorrect data states. Since such evidence is not visible in the output,
the probability of observing a failure during testing is somewhat reduced. The degree to
which it is reduced depends on whether the incorrect information is isolated to bits in the
data state that are not lost and are eventually released as output. As the probability of
observing a failure decreases, the probability of undetected faults existing increases.

Another researcher who has apparently come to a similar conclusion concerning the rela
tionship between faults remaining undetected and the type of function containing the fault is
Marick [MARICK90] . While performing mutation testing experiments with boolean functions,
Marick [MARICK90] noted that faults in boolean functions (where the cardinality of the range
is of course 2) were more apt to be undetected. Boolean functions have a great degree of

- 2 3 9 -

Function Implicit Information Loss DRR Comment

1 I(a) = 0 if a < 0 001 : 00I/2 a is integer
a otherwise

yes

2 I(a) = a + 1 no 001 : 001 a is integer
3 I(a) = a mod b yes 001 : b testability decreases

as b decreases
4 I(a) = a div b yes 001 : ooI/b testability decreases

as b increases, b f:. 0
5 I(a) = trunc(a) yes OOR : 001 a is real
6 I(a) = round(a) yes ooR : 001 a is real
7 I(a) = sqr(a) no 2 · OOR : OOR a is real
8 I(a) = sqrt(a) no OOR : ooR/2 a is real
9 I(a) = a/b no OOR : OOR a is real , b f:. 0
10 I(a) = a - I no 001 : 001 a is integer
1 1 I(a) = even(a) yes 001 : 2 a is integer
12 I(a) = sin(a) yes 001 : 360 a is integer (degrees) ,

a � O
13 I(a) = tan(a) yes 001 : 360 a is integer (degrees) ,

a � O
14 I(a) = cos(a) yes 001 : 360 a is integer (degrees) ,

a � O
15 I(a) = odd(a) yes 001 : 2 a is integer
16 I(a) = not(a) no 1 : 1 a is boolean

Table 1 : DRRs and implicit information loss of various functions.

implicit information loss. This result compliments the idea that testability and the DRR
are correlated. Additional evidence that correlation exists between implicit information loss
and testability is currently being collected.

2 . 1 . 1 Correlating Implicit Information Loss and the DRR

Implicit information loss is common in many of the built-in operators of modern programming
languages. Operators such as div, mod, and trunc have high DRRs.

Table 1 contains a set of functions with generalized degrees of implicit information loss
and DRRs. A function classified as having a yes for implicit information loss in Table 1
is more likely to receive an altered incoming parameter and still produce identical output
as if the original incoming parameter were used; a function classified as having no implicit
information loss in Table 1 is one that if given an altered incoming parameter would produce
altered output. A yes in Table 1 suggests data state error cancellation would occur; a no
suggests data state error cancellation would not occur. In Table 1, all references to b assume
it be a constant for simplicity. This way we only have to deal with the domain of a single
input, instead of the domain of a 2-tuple input. The infinities in the table are mathematical
entities, but for any computer environment they will represent the cardinality of fixed length
number representations of finite size.

- 2 4 0 -

Instead of describing the generalizations made concerning implicit information loss for
each element of Table 1 , Figure 1 illustrates the relationship between implicit information
loss and the DRR. In Figure 1 , we have 16 (a,b) input pairs that are presented to 2 functions:
one performs real division, the other performs integer division. For the real division function
there are 16 unique outputs, and for the integer division function there is one output. This
example shows how the differences in the DRRs of these two forms of division are correlated
to different amounts of information loss.

2.2 Explicit Information Loss

Explicit information loss is not predicted by a DRR as implicit information loss is. Recall
that explicit information loss is observed through code inspection, whereas the potential for
implicit information loss can be predicted from functional descriptions or code inspection.
Explicit information loss may also be observable from a design document depending on its
level of detail. Explicit information loss is more dependent on how the software is designed,
and less dependent on the specification's (input, output) pairs.

2 . 2 . 1 Observability

Integrated circuit design engineers have a notion similar to explicit information loss that they
term "observability.» Observability is the ability to view the value of a particular node that is
embedded in a circuit [MARKOWITZ88] . When explicit information loss occurs in software, you
loose the ability to see information in the local variables. So in this sense, greater amounts
of explicit information loss in software is a parallel to lower observability in circuits.

Discussing the observability of integrated circuits, [BERGLUND79] states that the principal
obstacle in testing large-scale integrated circuits is the inaccessibility of the internal signals.
One method used for increasing observability in integrated circuits design is to increase the
pin count of a chip, allowing the extra pins to carry out additional internal signals that can
be checked during testing. These output pins increase observability by increasing the range
of potential bit strings from the chip. In Section 3.3, I propose applying a similar notion
to increasing the pin count during software testing-increasing the amount of data state
information that is checked during testing. Another method used for increasing observabil
ity is inserting internal probes to trap internal signals; Section 3.3 also proposes a similar
technique by self-testing internal computations during execution.

3 Design Heuristics

Section 3 presents several strategies for lessening the effects of information loss. Section 3 . 1
describes benefits gained during program validation i f specifications are decomposed in a
manner that lessens the effect of implicit information loss at the specification level. Section
3.2 describes a way of lessening the effect of implicit information loss at the implementation
level. Section 3.3 describes ways of lessening the effects of explicit information loss.

- 2 4 1 -

3.1 Specification Decomposition: Isolating Implicit Information

Loss

Although the DRR of a specification is fixed and cannot be modified without changing the
specification itself, there are ways of decomposing a specification that lessen the potential of
data state error cancellation occurring across modules. During specification decomposition,
you have hands-on control of the DRR of each subfundion. With this, you gain an intuitive
feeling (before a subfunction is implemented) for the degree of testing needed for a particular
confidence that a module is propagating data state errors. The rule-of-thumb that guides
this intuitive feeling is: "the greater the DRR, the more testing needed to overcome the
potential for data state error cancellation occurring."

Section 3.1 presents a benefit that can be gained for testing purposes by using a speci
fication's DRR during design. During a design, a specification is decomposed in a manner
such that the program's modules are designed to either have a high DRR or a low DRR. By
isolating modules that are more likely to propagate incoming data state errors through them
during program testing (low DRR), testing resources can be shifted during module testing
to modules that are less likely to propagate incoming data state errors across them.

I am not suggesting that specification decomposition in this manner is always possible,
but rather when possible, it can benefit those persons testing the program. By isolating
higher amounts of implicit information loss, the benefit derived is knowing which sections of
a program have a greater ability to cancel incoming data state errors before testing begins.
This provides insight for where testing is more critically needed. This allows testers to shift
testing resources from sections needing less effort to sections needing more.

As an example, consider a specification g: { c + 2 if odd(a) and odd(b)
g(a, b, c) = c + l if odd(a) or odd(b)

c otherwise

where a, b, and c are integers. Many different designs can be used to compute g, but I will
concentrate on two designs are also shown in the table in Figure 2: Design 1 and Design 2
(In Figure 2 a thick arc represents large sets of values (too many to enumerate) , and a thin
arc represents a single value.) The DRR of 9 is 001 : 001. The DRRs of the subfunctions
of Designs 1 and 2 are shown in Figure 2. Design 1 has two subfunctions, /1 and /2. In
Design 2, I have taken 9 with its DRR of 001 : 001 and have decomposed it in such a manner
as to isolate the subfunctions that create its high DRR: /3 and f4. This decomposition
provides a priori information concerning where to concentrate testing (in f3 and /4) and
where not to (in f5, since subfunction f5 can be exhaustively tested) . Had subfunction /5
not been separated out, then in whatever other design this computation occurred, it would
be needlessly retested.

The reader might ask why subfunctions f3 and f4 should receive additional testing. This
is because if anything were to occur to the values of variables a and b before subfunctions
/3 and /4 are executed (thus causing a data state error affecting these variables) , it is likely
that these subfunctions will cancel the data state error. We should test less in /5 and test
more in f3 and f4. This shows how isolation according to module DRRs can benefit testing.

- 2 4 2 -

wrllO(a mod 2) + (b mod 2) +c)

.. b,c

subfunction

fl
f2
f3
f4
f5
f6

f2

classification

VDVR
VDVR
VDFR
VDFR
FDFR
VDVR

DRR
003 . 003 I ' I
oo� : 001
001 : 2
001 : 2

4:3
3 · 001 : 001

Figure 2: Design 1 (left) ; Design 2 (right) .

- 2 4 3 -

3.2 Minimizing Variable Reuse: Lessening Implicit Information

Loss

A method for decreasing the amount of implicit information loss that occurs at the operator
level of granularity is minimizing the reuse of the variables. For instance, as we have already
seen, a computation such as a := sqr(a) destroys the original value of a, and although you
can take the square root after this computation and retrieve the absolute value that a had,
you have lost the sign. Minimizing variable reuse is one attempt to decrease the amount of
implicit information loss that is caused by built-in operators such as sqr.

Minimizing variable reuse requires either creating more complex expressions or declaring
more variables. If the number of variables is increased, memory requirements are also in
creased during execution. If complex expressions are used, we lessen the testability because
a single value represents what were previously many intermediate values. Although there
is literature supporting programming languages based on few or no variables [BACKus78] ,
programs written in such languages will almost certainly suffer from low testabilities. Thus
I advocate declaring more variables.

3.3 Increasing Out-Parameters: Lessening Explicit Information

Loss

Consider the analogy where modules are integrated circuits and local variables are internal
signals in integrated circuits . This analogy allows us to see how explicit information loss
caused by local variables parallels the notion of low observability in integrated circuits. Since
explicit information loss suggests lower testabilities, I prefer, when possible, to lessen the
amount of explicit information loss that occurs during testing. And if limiting the amount
of explicit information loss is not possible, I at least have the benefit of knowing where the
modules with greater data state error cancellation potential are before validation begins.

One approach to limiting the amount of explicit information loss is to insert write
statements to print internal information. This information must then be checked against
the correct information. A second approach is increasing the amount of output that these
subspecifications return by treating local variables as out-parameters. A third approach
inserts self-tests (this is similar to the assertions suggested in [SHIMEALL91] for fault detection)
that are executed to check internal information during computation. In this approach,
messages concerning incorrect internal computations are subsequently produced.

These approaches produce the same end results, however in the processes employed to
achieve these results they differ slightly. The end results of these approaches are:

1 . Forcing those persons involved in the formalization of a specification to produce de
tailed information about the states of the internal computations. This should increase
the likelihood that the code is written correctly.

2. Increasing the cardinality of the range.

As an example of the third approach, consider inserting self-tests into the declaration
given in Section 2:

- 2 4 4 -

Module x (in-parameter a real , in-parameter c
out-parameter b : boolean)

local-parameters
z integer
y : boolean

Beginning of Body

z : = z mod 23
self-test (z , ok)
if not (ok) then vrit e (' varning on z ')

y : = express i on
self-test (y , ok)
if not (ok) then vrite (' varning on y ')

b : = f (a , c , y , z)
End of Body

real ,

A self-test such as self-test (z , ok) may either state explicitly what value z should have
for a given (a,c) pair, or it may give a range of tolerable values for z in terms of a particular
(a,c) pairing. If a self-test fails, a warning is produced.

These three approaches simulate the idea previously mentioned that is used in integrated
circuits-increasing the observability of internal signals [BERGLUND79, MARKOWITz88] . In these
approaches, I am not discrediting the practice of information hiding during design. How
ever, when writing software such as safety-critical software, there is a competing imperative:
to enhance testability. Information that is not released encourages undetected faults, and
increased output discourages undetected faults.

The downside to these approaches is that for the approaches to be beneficial, they all
need additional specified information concerning the internal computations. Maybe the real
message of this research is that until we make the effort to better specify what must occur,
even at the intermediate computation level, testabilities will remain lower.

3 .4 Combining Approaches
We have seen how different techniques can be used against various classifications of informa
tion loss. An even better methodology for achieving this goal is a combination of techniques,
applied at both design and implementation phases. For example, combining the technique of
releasing more internal information with the technique of minimizing variable reuse furthers
the available information for validation. The limit to any combined approach, however, will
be the ability to validate the additional information. After all, if the additional information
can not be validated, then there is no reason to expose it .

- 2 4 5 -

4 Summary
Information loss is a phenomenon to be considered by those who gain confidence in the
correctness of software through software testing. The suggestion that information loss and
testability are related is important; it implies that the ability to gain confidence in the
absence of faults from observing no failures may be limited for programs that implement
functions that encourage information loss. Although discouraging on the surface, I feel that
there are ways to lessen this limitation with prudent design and implementation techniques.

The unfortunate conclusion of Section 3 is that we must validate more internal infor
mation if we hope to increase software testability. To validate more internal information,
we must have some way of checking this additional internal information. This requires that
more information be specified in the specification or requirements phase. And for certain
applications this information is rarely available.

It may be that a theoretical upper bound exists on the testability that can be achieved
for a given (functional description, input distribution) pair. If we can change the functional
description to include more internal information, we should be able to push the upper bound
higher. Although the existence of an upper bound on testability is mentioned solely as
conjecture, my research using sensitivity analysis and studying software's tendency to not
reveal faults during testing suggests that such exists. I challenge software testing researchers
to consider this conjecture.

5 Acknowledgement

This research has been supported by National Research Council NASA-Langley Resident
Research Associateship.

References

[BACKus78] J. BACKUS. Can Programming Be Liberated from the Von Neumann Style?
A Functional Style and its Algebra Programs. Communications of the ACM,
21 (8) :613-641 , August 1978.

[BERGLUND79] NEIL C. BERGLUND. Level-Sensitive Scan Design Tests Chips, Boards, System.
Electronics, March 15 1979.

[KOREL87] BODGAN KOREL. The Program Dependence Graph in Static Program Testing.
Information Processing Letters, January 1987.

[MARICK90] BRIAN MARICK. Two Experiments in Software Testing. Technical Report
UIUCDCS-R-90-1644, University of Illinois at Urbana-Champaign, Depart
ment of Computer Science, November 1990.

[MARKOWITZ88] MICHAEL C. MARKOWITZ. High-Density ICs Need Design-For-Test Methods.
EDN, 33(24) , November 24 1988.

- 2 4 6 -

[P ARNAS72] DAVID L. P ARNAS. On Criteria to be used in Decomposing Systems into Mod
ules. Communications of the A CM, 14(1) :221-227, April 1972.

[SHIMEALL91] TIMOTHY J. SHIMEALL AND NANCY G. LEVESON. An Empirical Comparison of
Software Fault Tolerance and Fault Elimination. IEEE Transactions on Soft
ware Engineering, 1 7(2) : 1 73-182, February 1991 .

[VoAs91a] J. VOAS AND K. MILLER. Improving Software Reliability by Estimating the
Fault Hiding Ability of a Program Before it is Written. In Proceedings of
the 9th Software Reliability Symposium, Colorado Springs, CO, May 1991 .
Denver Section of the IEEE Reliability Society.

[VoAs91b] J. VOAS. L. MORELL. AND K. MILLER. Predicting Where Faults Can Hide From
Testing. IEEE Software, 8(2) , March 1991 .

[VoAs91c] J. VOAS. A Dynamic Failure Model for Estimating the Impact that a Program
Location has on the Program. In Proceedings of the 3rd European Software
Engineering Conf. , Milano, Italy, October 1991 .

- 2 4 7 -

MOTHER: A Test Harness for a Project
with Volatile Requirements

Joe Maybee

Graphic Printing and Imaging Division
Tektronix, Incorporated

Mail Stop 63-424
P.O. Box 1000 Wilsonville, Or. 97070
Usenet: maybee@pogo.WV.TEK.COM

Phone: 685-3572

ABSTRACT

This paper describes experiences with a test harness designed to quickly accom
modate changing external requirements. This paper is intended to share experi
ences and ideas for automated testing with quality assurance engineers. The sys
tem under test is a real-time embedded system that controls the complex elec
tromechanical mechanisms in a graphic printer.

Keywords and Phrases: real-time embedded systems, automated test methods,
requirements testing, electromechanical systems.

Biographical: Joe Maybee is a Senior Software Engineer with the Graphic Print
ing and Imaging Division at Tektronix. Joe has been employed as an engineer
with Tektronix since 1978, and has specialized in the design and implementation
of real-time embedded systems during this time. Recently, Joe has focused on
software quality in real-time embedded systems and the accurate definition of
user requirements.

Copyright © 1991 by Tektronix, Inc. All rights reserved.

- 2 4 8 -

CONTENTS

1 . Introduction
1 . 1 The basic nature of the problem to be solved: changing requirements
1 .2 The nature of the problem from the QA viewpoint: changing tests
1 .3 The tight coupling of requirements and tests
1 .4 Giving implementation engineers the timely response they need
1 .5 Changing the test harness for the test writers

2. The design of a quick-turnaround test system
2. 1 The problem of changing requirements
2.2 The problem of changing tests

3. What is MOTHER?
3 . 1 Meaning of the Acronym
3.2 MOTHER is based on a system composed of tools
3.3 Document generation tools
3.4 Test suite generation tools
3.5 Automated testing tool (MOTHER)
3.6 Automated test exception report tool

4. Using MOTHER
4. 1 Generating the Software Requirements Specification
4.2 Generating the test suites
4.3 Running the test suites
4.4 Analyzing the output of the test suites

5. Experiences with MOTHER
5 . 1 A test harness of this nature is a complete project itself
5.2 What worked well?
5.3 What could have worked better?
5.4 A test harness can have lasting value

6. Conclusion
6. 1 Presentation of metrics and numbers
6.2 Will we do it again? You bet! However
6 .3 Acknowledgements and Disclaimers

- 2 4 9 -

l _ __ _

1. Introduction

MOTHER: A Test Harness for a Project
with Volatile Requirements

Joe Maybee

Graphic Printing and Imaging Division
Tektronix, Incorporated

Mail Stop 63-424
P.O. Box 1000 Wilsonville, Or. 97070
Usenet: maybee@pogo.WV.TEK.COM

Phone: 685-3572

1.1 The basic nature of the problem to be solved: changing requirements

Software engineers have long based procedures and methods upon the existence of concise,
immutable requirements. The truth of the matter is that requirements are seldom, if ever, the
static, universal truths that we wish them to be.

In the classic software models, such as the waterfall model of software engineering, changing
requirements cause a ripple effect that cause perturbations throughout the engineering process
, 'pi peline" .

Regardless of how we wish that requirements were unchanging, the brutal truth is that freezing a
requirements specification to achieve a smooth, textbook software engineering process can result
in an engineering process that produces a high quality product that no one wants to buy. The fact
that requirements are volatile is a reality built into the environment in which today's products

must compete: customers ' requirements are changing at a faster rate than ever before.

This paper describes how one Quality Assurance (QA) group attacked the problem of changing
requirements.

1.2 The nature of the problem from the QA viewpoint: changing tests

From the QA viewpoint, the problem becomes one of reacting to the changing requirements on

demand. Providing facilities for quickly modifying, adding, or deleting the defined set of require

ments and their associated tests allows the QA team to respond to changing requirements in a
timely fashion.

Reacting quickly to change becomes a relatively easy task, provided that both of the following
are true:

1 . The QA team has control over the source documents for the specifications.

2. The requirements and tests are tightly coupled.

1.3 The tight coupling of requirements and tests

The concept of tight coupling of requirements and tests is not new. Many other QA teams have

explored the advantages of having requirements where tests are easily traceable to their associ
ated requirements and vice versa.

- 2 5 0 -

Traceability of the tests and requirements is only a part of the concept of tight coupling, however.
To take advantage of traceability, it becomes necessary for the test writer to be able to quickly

find the requirement for a given test. In the case where a requirement is being changed or
deleted, it becomes necessary for the requirement writer to quickly locate and then change or

delete the associated test.

1.4 Giving implementation engineers the timely response they need

It is very difficult to schedule discoveries. Since discovery is an integral part of diagnosing the
source of bugs, it follows that it is difficult to schedule bug fixes. In many instances, the
discovery of the bug is only a part of the problem: creative solutions are often needed to fix the
bug.

From a QA standpoint, scheduling QA runs is less of a problem because they tend to be
quantifiable tasks.

When scheduling projects, the verification portion of the project is almost always scheduled as a
fixed-length task, and it is always the most stressful: magazine advertisements are bought,
conferences are planned, and manufacturing is gearing up for production runs. Software schedule

slips at the end of projects are the most reprehensible, since they disrupt everyone's schedule.

Given that the QA task is the easiest to schedule and manage, it becomes most prudent to make
the QA task as fast and as efficient as possible. Every minute saved in the QA process is a minute
that can be given to the design engineering team for bug isolation and fixes.

1.5 Changing the test harness for the test writers

In many instances, new requirements for the product can place new requirements on the test har
ness. It is necessary. therefore, to provide the test writers with the ability to define new test
operations in a rather cavalier manner. 1

Making the test harness as flexible as possible to accommodate the test writers is, therefore, a
derived requirement.

1 I once read an album cover for a Jazz album that referred to an improvisation as the TMIUATGA technique:
" They're Making It Up As They Go Along." This concept seems to fit here rather nicely.

- 2 5 1 -

2. The design of a quick-turnaround test system

Designing a quick-turnaround test harness is not as difficult as one might expect: our test harness
was assembled and made functional in a matter of weeks by two engineers.

Such a harness need not be expensive, either. Our test harness was assembled using some inex

pensive, simple, off-the-shelf tools.

We managed to assemble this cheap, effective test harness by looking at the problem carefully
and from a slightly different perspective than usual.

2.1 The problem of changing requirements

The problem of fast response to changing requirements becomes a problem in fast manipulation
of source documents for the Software Requirements Specification (SRS). The SRS needs to be

easily accessible and easily modified by the persons responsible for the upkeep of this document.

Under ideal conditions, the SRS is a repository of all external requirements for the system
software.

2.1.1 Tight coupling of requirements and tests

Some of problems with changing requirements are that:

1 . The changed requirement is passed to team members in an informal fashion, and is never
recorded in the SRS. This usually happens in later stages of the project when the SRS is

perceived as having outlived its usefulness.

2. The test for the changed requirement is never updated. In the case of a dropped require
ment, sometimes the test is not removed from the test suites. In the case of an added
requirement, sometimes the appropriate test is never added.

Any suitable test harness design will provide for the inherent tight coupling between the written
requirements and the test for that requirement.

2.1.1.1 Making requirements writing a QA responsibility

Traditionally, writing the SRS has been a task that belonged to the design engineering team.
After the SRS was written, the QA team was then faced with the problem of isolating the design
requirements from this document. Often, these requirements were less than explicit.

It is difficult to find fault with the design engineers for the problems that arise with the SRS, since

in many instances the true purpose of this document is less than clear.

Testability is a measure of a requirement's quality. If a requirement isn't testable, there is no
point in defining it as a requirement.

The QA group has a vested interest in the SRS, and as such, should be more than happy to take
charge of such a document. Design engineering, on the other hand, should be more than happy to
relieve itself of this responsibility.2

2 1n the early stages of this project, I had engaged a member of the design team in a heated debate on
specifications. I had generated a list of documents that were to be written and their specific audiences and
purpose. I was told by the designer that if I had such a definite idea as to how the SRS should be written, why
didn't I assume the burden of writing it? Of course, I seized the opportunity.

- 2 5 2 -

2.1.1.2 Embedding the tests in the requirements document

A simple method for binding the tests to the requirement is to embed the test in the SRS immedi
ately after the requirement. As long as the two can be correctly identified within the document,
this provides a simple coupling method that provides the necessary link for finding either the test
or the requirement. If you want to find the test for the requirement, look immediately after the
requirement. If you want to find the requirement for a particular test, look in front of the test.

By breaking the requirements document up into logical, manageable pieces, it is possible to pro
vide the granularity necessary in order to allow several QA engineers to work on different parts of
the document at once.

2.1.1.3 Making it easy to write tests

By using a test description "language , ,3 of our own design, we can provide the QA engineers
with a means for writing abstract descriptions of tests. If our test description " language" is care
fully designed, it will be easy for QA engineers to remember the necessary ' 'vocabulary. "

In instances where our test " vocabulary" is inadequate, the test harness should allow for the fast
installation of extensions. In short, it ought to allow QA engineers to " make it up as they go
along" in instances where the current test "vocabulary" fails them.

2.1.1.4 Enforcing the disciplines

To enforce the disciplines required of such a scheme, here we would simply advise: use QA
engineers, not design engineers. QA engineers will most likely have more of a vested interest in
maintaining the requirements and tests than the design engineers will. There seems to be a ten
dency among design engineers to abandon documents almost immediately after they are written,
since document maintenance seems like " living in the past. , ,4

Enforcing discipline becomes an oxymoron, of sorts. Discipline either exists or it doesn't, and
cannot be " enforced. "

We have made it as easy as possible to find both the test and the requirement: they are always
together. If you change one, you change the other. If QA engineers are not inclined to practice
good document maintenance procedures, all is probably lost anyway.

2.1.2 Timely turnaround of the QA testing procedure

There are several necessary items for timely turnaround in the QA procedure:

1 . Fast evaluation and correction of tests: are they written correctly?

2. Fast extraction of the latest tests: getting the embedded tests out of the current version of
the SRS as quickly as possible.

3. Fast execution of the latest tests: getting the tests executed as quickly as possible.

4. Fast evaluation of the test results: getting the test exceptions report generated as quickly as
possible.

3 The language at use here is the FORTH language with a set of custom operators. As the reader will see later on
it provides an almost prose-like "language" for writing descriptions of tests for the harness.

4 Before any design engineers take out any contracts, I'd like to point out that I, myself, am a design engineer. I
understand how this works, since I have been in this position many times. Remember, I'm on your side: did
you read the part where I said the QA team should write the requirements specification?

- 2 5 3 -

2.1.2.1 Fast evaluation and correction of tests

QA engineers are humans.S Humans make mistakes in interesting ways. It becomes necessary to
be able to quickly evaluate the validity of a test in tenns of correct use of the test ' 'language" and
"vocabulary. " If the test harness is sufficiently fast, it is trivial to check the tests: simply feed
the test to the test harness and look at the results.

Adopting this approach places additional emphasis on the need to make the test harness operate
as quickly as possible.

2.1.2.2 Fast extraction of the latest tests

We have indicated in prior discussion that the design process becomes more difficult to schedule
near the end of the project. The same is true for the design of the test cases. After we check a
particular run of the latest tests for test errors, it becomes desirable to generate the next test suite
from the corrected SRS as soon as possible.

If we place sufficient emphasis on the efficiency of the test extraction software, we can generate
the new test suites in a modest amount of time. This turns out to be reasonably simple to do, pro
vided we choose our text fonnatter and SRS test ' 'vocabulary" wisely.

By providing keyword delimiters that identify the beginning and end of a requirement and the
beginning and end of a test, the test extraction software merely has to scan the file and generate
the necessary files based on these delimiters.

2.1.2.3 Fast execution of the latest tests

Fast execution of the latest test suite becomes necessary for quick response to new or changed
tests and to new versions of the product software. In this case, direct execution of the test cases
by an interpreter is, in fact, extremely practical.

We adapted a public domain FORTH interpreter to our purpose.6 Since the FORTH interpreter
was written in C, we were able to install our own operators in the interpreter to drive a set of off
the-shelf boards from an instrumentation company. With the assistance of an electrical engineer,
we were able to interface these boards with the printer under test.

By using a state-stimuLus-response approach to our requirements, we are able to write tests with
reasonable ease. Using an approach where the requirements were categorized within the SRS
along finnware inputs, we were able to specify the response of the printer to every stimulus
across all operational modes. While this is an exhaustive approach, it has the advantage of pro
viding excellent coverage in the specification and has the added benefit of accentuating incom
plete areas: the SRS is not finished until a response is defined for every stimulus across all opera
tional modes.

5 There is obvious room for debate here. A QA team I know of was once accused of using an .. army of
monkeys" testing strategy by a second-level manager whose own heritage had been called into question more
than once. A picture clipped from a newspaper of a sheep with its hoof on a tenninal keyboard appeared in the
QA area. A hand-written caption under the sheep read: "We will no longer use an army of monkeys to test
software."

6 I snagged this FORTH interpreter off of a USENEI news group (comp.misc.sources), and had it laying around
in a directory when this opportunity presented itself. If you're trying to justify a USENEI connection to your
manager, point out that opportunity favors the prepared pack-rat.

- 2 5 4 -

By using the state-stimuLus-response approach to specification, our initial guess at the necessary
operators was that there would have to be five major categories of operators:

1. Operators to put the printer into a particular state.

2. Operators to provide the printer with a particular stimulus.

3. Operators that monitor the printer for a particular response.

4. Operators that provide elementary utilities, such as a "deadman timer" (sometimes called a
" watchdog timer' ') to keep response operators from waiting forever for a response from a
" dead" printer.

5. TMIUATGA7 Operators: Operators that we never even dreamed of.

Our first guess proved reasonably fruitful: it provided over half of the necessary operators.

Also, by providing logging facilities built into the modified interpreter it became very easy to log
the progress of the test. Log files were generated for:

1. The requirements themselves. Requirements were embedded in the test suites and are
displayed upon the screen of the test harness console as the test is being run.

2. The results of the tests. Every operator in the test suite left a value on the FORTH stack
that indicated the success, failure, or timeout of that operation. At the end of the test, if
there was anything other than successes on the stack, the test was marked in this log as
FAILED (along with the requirement number that failed).

3. Any input from the diagnostic port of the printer under test. Design engineers sometimes
wrote important diagnostic information out an RS-232 port on the machine, which we were
more than happy to capture and log for them.

4. Any operator instructions that were issued. In the course of testing a printer, it becomes
necessary to inspect the resulting prints. In some cases, the test needs to instruct the test
harness operator to write an identifying number on the print and lay it aside for inspection
by the test analyst. In other cases, the test harness needs to tell the test harness operator to
remove jammed or misfed paper from the machine.

5. The test stream itself.

Each test log contains a sequence number that is incremented anytime a message is written to any
file, a time and date stamp, the identifier of the requirement currently under test and the message
itself. This makes it possible to extract, merge and sort any combination of the logs to produce
the reports discussed in the next section.

2.1.2.4 Fast evaluation of the test results

Fast evaluation of test results is also a critical element of the fast turnaround requirement for the
test harness.

A simple utility is written to search the logs for errors, which have been carefully tagged by the
test harness with the words "FAILED" or "TIMED OUT". Since these records contain require
ment numbers, records containing information germane to this failure can be extracted from the
other logs by requirement number, then sorted by the leading sequence number to produce accu
rate sequential audit trails as to what occurred during the test itself.

7 "They're Making It Up As They Go Along" Remember?

- 2 5 5 -

2.2 The problem of changing tests

Several problems are posed by changing requirements or tests. Most of these are minor prob
lems, by design. The problem of changing tests is met by the following derived requirements:

1 . The test harness needs to. be extensible.

2. The tests will have to be evaluated and corrected.

2.2.1 The test harness needs to be extensible

The test harness is indeed extensible. The addition of any new operator simply requires the addi
tion of a small amount of C code, or definition of the new operator using a combination of exist
ing operators in FORTH.

2.2.1.1 New test operators will be required as needs are discovered

There will be new test operators required as the test writers discover new operations that will
need to be performed. The approach we used was simple: make up the operators that are needed,
then they can be installed by a test technician with a minimum amount of effort.

2.2.1.2 New test operators will have to be tested

The new operators can be tested in the test harness itself. The test harness is designed to take
FORTH input from the keyboard as well as from file input. The QA engineer testing the new
operator can key in an experimental sequence from the console to generate a test case for the new
operator.

2.2.2 New tests will have to be evaluated and corrected

As mentioned previously, because of the quick turnaround from the test harness itself, the best
way to evaluate new tests is to simply run them.

Fast evaluation of the results provide the QA engineer with the feedback necessary to evaluate the
tests in a modest amount of time, usually a matter of an hour or two. Once a suite is corrected, it
only needs to be retested if more modifications are made.

2.2.2.1 Test operators will be misspelled

There are two approaches to this problem:

1. Correct the misspelling in the test suite.

2. Add another operator with the misspelling, should the number of misspellings prove too
great.

Misspellings usually indicate that an operator name was poorly chosen, usually because of incon
sistencies with other operator names. Many times it is better to change the name of the operator
than to change the test suite: the misspelling will reappear again and again.

- 2 5 6 -

2.2.2.2 Test operators will be misused

Test operators will sometimes be misused. Usually this is because of a miscommunication
between the test writer and the test harness implementor. Fortunately, this has happened very
rarely on this project. The same approach as the previous section applies here:

1 . Correct the misuse in the test suite.

2. Revise the operator to behave according to the way it tends to be used.

In almost every case, it is better to revise the operator to behave the way it tends to be used: usu
ally the test writer has been hopelessly indoctrinated in the misuse of the operator. It may well be
that the so-called " misuse" indicates a conceptual problem with the test harness implementor.
Never put the cart before the horse: support the test writer, not the test harness implementor. In
this case the test writer is the customer: the customer always comes first.

- 2 5 7 -

3. What is MOTHER?

3.1 Meaning of the Acronym

MOTHER is an acronym for "Maybee's Own Test Harness for Evolving Requirements." This
name itself evolved from a pet name that the test harness earned in its early implementation
stages. It took a considerable effort to come up with an name that justified the acronym.

3.2 MOTHER is based on a system composed of tools

MOTHER is hardly a monolithic system. MOTHER consists of a series of simple, but highly
specialized tools strung together with a set of scripts. These tools consist of:

1 . Document generation tools.

2. Test suite generation tools.

3. Automated test tools (the MOTHER test harness).

4. Automated test exception report tools.

If the reader is more interested in the actual use of MOTHER rather than the building-blocks, I

recommend skipping ahead to the section entitled Using MOTHER.

3.3 Document generation tools

3.3.1 The "ms" document formatter

The ms document formatter is a macro package for the troff document formatter. The ms package
has macros that support various document formats. (This paper was generated using the ms
macro package.)

3.3.2 "ms" based macros

The troff document formatter provides a macro facility that allows users to define their own mac
ros. Since we place requirements and tests in the same file, we may define macros that delimit
each requirement and its associated tests. A completely delimited requirement and test would
look like this :

. RQ

The ready mode sha l l cause the FAULT line to be a s serted

at the interface when the j am acce s s door i s opened .

. RE

. TS

SET-READY-MODE

OPEN JAM-ACCESS-DOOR

?FAULTED TRUE - I S- SUCCESS

. TE

The macro . RQ delimits the beginning of a requirement, while them macro . RE delimits the end.
The . T S macro delimits the start of a test and the . TE macro delimits the end of the test.

These macros are defined with a built-in switch that allows QA engineers to print the require
ments specification with or without tests included. If copies of the SRS are needed for reviewing
the tests, the . . include tests" switch can be set to cause copies of the SRS to be printed with both
the requirements and their tests. If, on the other hand, the tests are not required, tremendous

- 2 5 8 -

amounts of paper can be saved by turning off the • • include tests " switch.8

3.3.3 Source control (ReS)

Off-the-shelf source control tools were used to control the SRS. We chose the RCS package for
no other reasons than: it was already there, we were familiar with it, and it did everything we
needed it to do.

Primarily, we needed a facility that would allow us to:

l . Control the ownership of the files to prevent two people from working on the same file at
the same time.

2. Merge the changes after two people work on different revisions of the same document at the
same time.

3. Annotate revisions of the files with commentary describing the changes made to the docu
ment.

4. Review the commentary on the changes made to the various revisions of the document.

5. Review what was really changed in the various revisions of the document.

6. Remove improvements to the files that proved to be detrimental for various reasons.

3.4 Test suite generation tools

3.4.1 Smoke and mirrors: Shell and PERL scripts

Using the fundamental off-the-shelf building blocks described in the previous sections, a little
"glue" is needed to piece the entire system together. Specifically, we need to be able to:

1. Extract the tests from the SRS source files.

2. Isolate tests by category: those with outstanding bugs, those that require human interven
tion to run, those that can run in an unattended fashion, and those that are only partially
written (or not written at all) .

3. Generate metrics for the test suites: How many tests fall into each of the previous
categories.

4. Monitor the progress of the test harness machinery.

5. Generate the test exception reports from the test logs.

3.4.1.1 Bourne shell is the lowest common denominator

We used the Bourne Shell as our "glue" for our system. The reasons for this are elementary, and
are part of our ongoing theme: it was already there, we were familiar with it, and it did every
thing we needed it to do.9

8 The size of the SRS as it exists without the tests is downright intimidating. It is a reference book, not literature.
Imagine trying to read a large volwne of mathematical tables as if it were prose. Anything to reduce its size is
desirable, especially when giving a copy to an outside organization for review.

9 The reader is probably more than familiar with the advantages of this philosophy. In many instances the time
required to study and analyze new tools, the time required for learning new tools, and the associated expense of
new tools is prohibitive. Remember, we are striving for fast responses. Loosely coupled tools are highly
configurable and allow the engineer access to the inner works: if a tool doesn't do exactly what you need to do,
rewire it!

- 2 5 9 -

The Bourne shell also has the advantage of high proliferation. It's everywhere. This gives a
degree of portability, but this is a moot point: portability was not one our aims.

3.4.1.2 PERL: Practical Extraction and Report Language

PERL is a report language that is gaining popularity as a replacement tool for " sed" and " awk. "
PERL has two advantages as a general purpose tool for manipulating files and generating reports :
it's easy to learn, and it has a very wide variety of capabilities. 1 0

3.4.2 Shell script: build_test _suite

The shell script bu i l d _ t e s t_s ui te generates the entire test suite from the SRS and sorts the
test files into directories on the basis of the status of the test. The status of the test may be as fol
lows:

1. The test may be a fully automatic test. Such test files are sorted into a directory
called aut o .

2. The test may require intervention from a human operator, such as marking a test print with a
test number for later inspection. Such test files are sorted into a directory called man u a l .

3. The test may be partially written. That is, a portion of the test may be waiting for the
implementation of an operator that was recently , . invented. " Such test files are sorted into
a directory called par t i a l .

4. The test may not be written at all. The test suite generator is set up to recognize that a
requirement may not have an associated test. In this case, these test files (which consists of
the requirement portion and nothing else) are sorted into a directory called no _ t e s t .

The first step in accomplishing these sorts is to combine the multitude of individual files i n the
SRS into a monolithic unit. This is accomplished by using a utility called s oe l im that comes
with the troJ! package. Since the entire SRS is generated by troJ!, individual chapters are
"included" into the body of the main file using the include macro " . s o " , provided by the troJ!
package. The s o e l im utility expands all included files into a single output stream that is
redirected to a file, thus achieving a file combining all of the latest individual files of the SRS.

The next step involves extracting the tests from the SRS. This is achieved using a PERL script
called e xt r a ct _ t e s t s . This script takes the monolithic SRS file as input, and watches for the
special macro names . RQ (beginning of requirement), . RE (end of requirement), . T S (beginning
of test) and . TE (end of test).

Since the . RQ macro generates a unique requirement number that gets printed with the require
ment header, the extract_t e s t s script generates the exact same number that is then used as a
file name for the tests. In other words, when the document is printed, the requirement numbered
2.4.6.7.8.2 can be found with its associated test in a file named 2.4.6.7.8.2, and will be sorted into
its appropriate directory in the next step. In the process of extracting the tests, the delimiter
macros . RQ, . RE, . T S , and . TE are stripped of their leading periods, thus converting them into
specialized FORTH operators that will have significance to the harness described in the next sec
tion, Automated testing tool (MOTHER).

10 For an excellent series of articles on PERL, see the Daemons and Dragons section of Unix Review, Vol. 8, Nos.
5, 6 & 7. Rob Kolstad, the author of these articles, provides a very instructive tour of PERL.

- 2 6 0 -

The identification of test files is a simple process:

1 . If the file contains a FORTH comment beginning in column one, it is presumed that this
comment is substituting for an operation that is yet to be decided on. (This is a general con
vention used by all test writers in our group.) These tests are then sorted into the
directory part i a l .

2. I f the test contains a key operator that requires human intervention to complete, the test file
is placed in the ma nual directory. A file of these key operators is kept in a predefined file,
and is read by the e x t r a ct_t e s t s script .

3. If the file is missing a TS operator, it has no written test, and will be sorted into the
directory no_t e s t .

4. If the file does not fit into any of the previous categories, it is then presumed to be automatic

and will be sorted into the directory auto.

Once all of the tests have been generated, the utility s ort _ t e s t s sorts the tests into their
appropriate directories. This proves to be useful from a document management perspective. For
instance, once we find a requirement, say, 2.4.6.7.8.2 in the directory structure, we know its
status. If we find 2.4.6.7.8.2 in the no_t e s t directory, we know that there is currently no test
associated with this requirement. This proves to be a most useful scheme when building the tests
themselves, since a simple listing of the no _ t e st directory gives us a listing of files we need to
write tests for, and a listing of the part i a l directory gives us information about functionality
still needed in the test harness.

In the next step, the bui ld_t e s t_su i t e calls a shell script t ag_de f e r r e d_t e s t s to

move any tests with outstanding bugs into a deferred state. These deferred bugs are tagged with
the suffix " . de f e r r e d . <bug- number>" on their file name. (<bug- numb e r > is of course
the actual bug number from the bug database.) Deferral of the tests is an interesting concept, and

a test may be deferred for two reasons:

1 . The test may be deferred because of an outstanding bug in the bug database. All bugs are
tagged with the number of the requirement that is unfulfilled by the bug itself. If test

2.4.6.7.8 .2 has an outstanding bug reported against it, there is no sense in running the test
again until the bug is fixed. Indeed, it is one less test exception that the test analyst has to
wrestle with, and this facility also helps prevent multiple submissions of the same bug
reports.

2. The test may be deferred because of another outstanding bug that is wreaking havoc with

the test suites in general. Consider the case in which an outstanding bug makes it impossi
ble to get a reliable status report from the printer. This would make it desirable to remove

any tests that rely upon a status report from the test suite. Any test may be deferred by plac
ing two fields in a special file used by the t a g_de f e rr ed_t e st s script: the number of
the test to defer, and the bug number of the bug that is responsible for its deferral.

The next step is building the test suites into logical subsuites that will be run on the test harness
as individual runs. This grouping is accomplished by a shell script called b l o c k_s u i t e s .
This script simply searches each of the directories mentioned above and concatenates all tests in a
particular section together. In other words, we happen to know that all requirements in chapter
2.4. 1 are requirements dealing with software protocols. It would make sense, then, to collect all
files whose name begins with the string '2.4. 1 ' into a single suite and give it appropriate name
like: s wprot o . f o r . The . f o r extension on the file name in this example alludes to the fact

that this is FORTH source that may be directly executed on the test harness described in the next

- 2 6 1 -

------------ ------

section.

The final step is to collect any metrics on the test suites in general. These metrics are used pri
marily to monitor the progress of the test writing effort. The shell script count_suite pro
duces a report in a file called count in the current directory. Here is an actual example of the
report produced early in the test harness development cycle:

Requ i rement s that have • . • .

Automat i c t e st s :

Manual t e st s :

No t e s t s written :

Partial t e s t s written :

Total requi rement s :

633
1 9 0
3 2 0
2 7 7
1 4 2 0

Total numbe r o f tests in a l l suite s : 1 4 3 0

4 4 . 5 %

13 . 3 %

2 2 . 5 %

1 9 . 5 %

This report is produced by simply counting the number of instances of the T S and RQ operators in
the directories. Keep in mind that a requirement may have more than one test.

3.5 Automated testing tool (MOTHER)

The automated testing tool is the physical manifestation of the MOTHER system, and is the por
tion of the system most frequently referred to as "MOTHER" .

The testing tool consists of several elements:

1. The modified FORTH interpreter.

2. The PC-NFS file system link to the server.

3. The test monitor tool.

4. The automated test exception report tool.

Figure I shows how the fundamental elements of the PC computer interface with the system
under test.

3.5.1 The FORTH interpreter

At the heart of the automated test harness is a public domain FORTH interpreter, written entirely
in "C". We have modified this FORTH interpreter to compile under the Turbo-C++ compiler on
a PC computer.

We installed a set of custom operators in the FORTH interpreter to allow us to manipulate a set
of off-the-shelf instrumentation boards that allow us to drive the printer firmware inputs, and
monitor printer firmware outputs.

The FORTH interpreter also has a set of operators that interface with commercially available
RS-232 drivers which allows MOTHER to communicate with the diagnostic interface in the
printer.

- 2 6 2 -

Console Console
Keyboard Monitor

/";:. �":,.

PC/AT

V V
BIOS

D D }

FORTH � � /L
Interpreter "-r--V DOS Y---,/ PC-NFS "'-r

/> L '(� �7
Stimulus/Response Parallel Port RS-232 Drivers & Hardware Drivers & Hardware Drivers & Hardware

/> <> <'>
I I

I I
'"

Phaser III ,/I-
Printer PC-NFS Server

Figure 1 : Test Harness Architecture

- 2 6 3 -

3.5.1.1 Custom test operators

Custom test operators were constructed to interface the test stream with the test hardware,
specifically firmware inputs and outputs. These custom test operators were constructed on a
three-tier scheme. The three tier scheme was as follows:

1. Operators could be coded in FORTH, as an aggregate of other FORTH operators.

2. Operators could be coded in C, with interfaces to FORTH level calling styles (i.e. parame
ters could be passed on the FORTH stack).

3. Operators could be coded in C, with interfaces to other C routines. (i.e. parameters could be
passed on the processor stack).

This scheme provided engineers with the ability to interface C with FORTH and FORTH with C.
It also allowed engineers to construct prototypes of the operators very quickly, using the FORTH
interpreter itself.

Experience indicates that the C interface with FORTH operators was never used: engineers
worked from the FORTH level down to the C level, and never in the other direction. This would
be in keeping with normal top-down programming techniques.

3.5.1.2 Custom hardware interface

The custom hardware interface was a set of off-the-shelf boards that were interfaced with the
printer under test. The overall cost of the off-the-shelf boards for each test harness was approxi
mately $ 1000. At the time the test system was designed, the firmware environment had already
been defined, and the hardware interface required some modification of stock hardware to support
the test harness.

One of the requirements of the test harness is that there could be no modification of the system
under test that affected the firmware. The reason for this is obvious: if you are testing a custom
version of the firmware, you are not testing the customer's version of the firmware.

The hardware was constructed using a stimulus/release approach. This approach provides a
mechanism which allows the printers native hardware to assert normal operating conditions to the
firmware when not overridden by the test harness. To illustrate this concept, consider the follow
ing example:

It is desirable to force certain ink-level conditions in the course of testing a printer. We may want
to force ink-levels that are FULL, HALF, or EMPTY at the firmware interface. However, when

we are not providing stimulus to the ink-level inputs of the firmware, we want the ink-levels to
register their real values. This is so that in the course of testing that doesn't exercise the ink
levels as part of the suite, the operator will have some indication of whether additional ink is
required for normal operation of the printer. (This is especially true when running a suite of tests
that makes a lot of prints.) Therefore, in addition to a hardware interface to the ink-levels that
provides the FULL, HALF and EMPTY stimulus, we must also provide a RELEASE operation
that allows the hardware to detect the normal (true) levels of ink.

All hardware interface operators have a RELEASE operation, and all hardware interfaces are
RELEASED at the end of each test. All interfaces are RELEASED at the end of each test, so that
it is not necessary for the test writers to clean up at the end of each test: the test writers can sim
ply provide the necessary stimulus, check for the results, and leave the system in its current state.
The cleanup is automatic, and is an integral part of the TE operator.

- 2 6 4 -

3.5.2 The PC-NFS file system

The PC-NFS file system is used to run tests and store test logs directly in the test suite directories.
The test suite directories are generated by the server and the server structures are mounted on the
PC computer.

As a consequence, when tests are run, the executable image of the MOTHER automated test sys
tem and the source suites are actually on the server. The automated test harness writes its log
files directly to the PC-NFS mounted directories, and no files are used from the Pc. Source files
for the MOTHER automated test harness are compiled on the PC and use PC local directories (as
opposed to the PC-NFS directories) for development purposes: licensing considerations dictated
that our commercial libraries and packages cannot be shared as freely as source files, so we were
obliged to keep the development structures local to the PC machine itself.

3.5.3 Test monitor tool

Since the PC-NFS server has both the test suites and the test logs available, it is possible to moni
tor the progress of the suites by comparing the actual suites with the resultant audit trail (test
logs) on the server. A utility on the server, pet _done, does this comparison and prints the per
centage of the testing that is currently done. By using this facility, the test technician can esti
mate the amount of time left in the execution of a particular suite.

3.6 Automated test exception report tool

Immediately after a particular suite has executed, an automated test exception report tool may be
used to generate exception reports. This tool, f a i l ure _r epo r t s , is a shell script that uses
simple utilities to generate the exception reports from the test report logs.

3.6.1 Test report logs

The automated test harness writes several error logs during execution of the test suites:

1 . e r r . l o g : The log file o f errors detected by the test harness.

2. mot h e r . log: The log file of the executed test operators.

3. z t e rm . l o g : The log file of data received from the RS-232 diagnostic interface (tenninal
interface).

4. i n s t r . l og: The log file of instructions issued to the operator during the run of the test
suite, and the operator responses to those instructions.

5. r e q . l og: The log file consisting of the actual text of the requirements that were
displayed during the test. (Requirements are displayed upon the console while the test for
that requirement is actually being perfonned.)

- 2 6 5 -

3.6.1.1 Format of the log files

Every time a record is written to a log file, five essential elements are written:

1 . The sequence number. This is a number that is incremented every time any record is writ
ten. This number is the first element written to a file, and is a fixed format integer, occupy
ing six columns in our implementation.

2. The time stamp. This is primarily to give the test analyst an idea of relative time frames
involved. It is also a fixed format field, consisting of hour, minute, second and millisecond.

3. The number of the requirement under test. The custom FORTH operator RQ places this

information in a global variable so that this information is available to all routines within
the test harness.

4. Tag indicating the file that the record was written to. This tag is an "E" for e r r . l og,
"M" for mother . l og, "Z" for z t e rm . log, "I" for i n s t r . l o g , and "R"
for req . l o g .

5. The message. The remaining information is simply the content of the message written to the
specified file.

The following is a brief excerpt from the mo ther . l og file of the ready mode test suite that
illustrates the use of this format:

O O O O O S 1 6 : 4 4 : 0 6 . 4 5
0 0 0 0 0 6 1 6 : 4 4 : 0 6 . 67

-M- ----S tream opened----

-M- [0 J OK

00000' 1 6 : 4 4 : 0 6 . 7 8 -M- RQ [0 J OK

0 0 0 0 1 4 1 6 : 4 4 : 0 7 . 4 4 2 . 4 . 3 . 1 0 . 0 . 0 . 1 -M- TS [1 J OK

0 0 0 0 1 5 1 6 : 4 4 : 0 7 . 5 5 2 . 4 . 3 . 1 0 . 0 . 0 . 1 -M- SET-READY-MODE [6 J OK

0 0 0 0 1 8 1 E : 4 4 : 0 9 . 03 2 . 4 . 3 . 1 0 . 0 . 0 . 1 -M- [6 J OK

0000 1 9 1 E : 4 4 : 0 9 . 1 4 2 . 4 . 3 . 1 0 . 0 . 0 . 1 -M- FULL BLACK I NK-LEVEL [7 J OK

000020 .1 6 : 4 4 : 0 9 . 53 2 . 4 . 3 . 1 0 . 0 . 0 . 1 -M- LOAD-MED IA (set i nk l e ve l s) [9 J OK

000023 1 6 : 4 4 : 2 5 . 1 8 2 . 4 . 3 . 1 0 . 0 . 0 . 1 -M- FORM- FEED [1 1 J OK

000029 1 6 : 4 4 : 4 6 . 8 8 2 . 4 . 3 . 1 0 . 0 . 0 . 1 -M- [1 1 J OK

0 0 00 3 0 1 6 : 4 4 : 4 7 . 0 4 2 . 4 . 3 . 1 0 . 0 . 0 . 1 -M- DEC IMAL 3 S ECONDS S ET-DEADMAN - T I M E R [1 2 J OK

et c .

The numbers in brackets indicate the depth of the FORTH stack at the time the execution of a

line is completed. The TE operator will examine the FORTH stack at the end of a test, and print
out the depth at which any "FAILED" or "TIMED OUT" markers have been placed on the
stack. This makes it simple to locate which part of the test failed, and it also makes it simple to
determine the reason for this failure.

The power of this elaborate format will become apparent in our discussion of the test exception
report generator in the next section.

3.6.2 Shell script: failureJeports

The f a i l ur e_repo rt s utility extracts lines from the error log that contain the keywords
FAILED or TIMED OUT. Since every line in the error log is tagged with the requirement
number, it can extract the actual requirement number from the tagged line. These requirement
numbers can then be sorted and piped through a filter designed to ensure that each requirement
number appears only once. (This prevents duplicate exception reports, should a particular
requirement have more than one failure entered in the error log.)

- 2 6 6 -

At this step in the script, we have a unique list of requirements whose tests have logged at least
one failure. The next step is to extract the lines from the other relevant files to produce a coherent
picture of the actual sequence of transactions that took place. The experience of the test analysts
indicate that to form this coherent picture of the actual failure, we need information from the
requirements text log (req . log), the error log (err . log), the diagnostic RS-232 port log
(zterm . log), and the test log (mother . log).
For each requirement in turn, the script:

1 . Uses grep to extract all lines pertaining to that requirement from the files indicated.

2. Pipes the grep output into sort, which sorts by the first field (the sequence number).

3. Pipes the sort through pr to format an exception report listing conducive to analysis.
Thus, each page of the exception report has a heading line indicating requirement number,
time of generation, etc.

- 2 6 7 -

Here is an example of an exception report listing: 1 1

Jun 4 1 2 : S 9 1 9 9 1 Requirement 2 . 4 . 3 . 1 0 . 0 . 0 . 2 Page 1

Requirement : 2 . 4 . 3 . 1 0 . 0 . 0 . 2

0 0 0 0 6 7 1 6 , 4 5 , 2 8 . 0 7 2 . 4 . 3 . 1 0 . 0 . 0 . 2

0 0 0 0 6 8 1 6 , 4 5 , 2 8 . 1 8 2 . 4 . 3 . 1 0 . 0 . 0 . 2

0 0 0 0 6 9 1 6 , 4 5 , 2 8 . 1 8 2 . 4 . 3 . 1 0 . 0 . 0 . 2

0 0 0 0 7 0 1 6 , 4 5 , 2 8 . 2 9 2 . 4 . 3 . 1 0 . 0 . 0 . 2

0 0 0 0 7 1 1 6 , 4 5 , 2 8 . 3 4 2 . 4 . 3 . 1 0 . 0 . 0 . 2

0 0 0 0 7 2 1 6 , 4 5 , 2 8 . 4 5 2 . 4 . 3 . 1 0 . 0 . 0 . 2

0 0 0 0 7 3 1 6 , 4 5 , 2 8 . 62 2 . 4 . 3 . 1 0 . 0 . 0 . 2

0 0 0 0 7 4 1 6 : 4 5 : 2 8 . 7 8 2 . 4 . 3 . 1 0 . 0 . 0 . 2

0 0 0 0 7 5 1 6 : 4 5 : 3 0 . 1 0 2 . 4 . 3 . 1 0 . 0 . 0 . 2

0 0 0 0 7 6 1 6 : 4 5 : 3 0 . 2 1 2 . 4 . 3 . 1 0 . 0 . 0 . 2

0 0 0 0 7 7 1 6 : 4 5 , 3 0 . 3 2 2 . 4 . 3 . 1 0 . 0 . 0 . 2

0 0 0 0 7 8 1 6 : 4 5 : 3 0 . 7 1 2 . 4 . 3 . 1 0 . 0 . 0 . 2

0 0 0 0 7 9 1 6 : 4 5 , 4 6 . 1 9 2 . 4 . 3 . 1 0 . 0 . 0 . 2

0 0 0 0 8 0 1 6 , 4 5 : 4 6 . 2 5 2 . 4 . 3 . 1 0 . 0 . 0 . 2

0 0 0 0 8 1 1 6 : 4 5 , 4 6 . 4 7 2 . 4 . 3 . 1 0 . 0 . 0 . 2

0 0 0 0 8 2 1 6 , 4 6 : 0 7 . 6 2 2 . 4 . 3 . 1 0 . 0 . 0 . 2

0 0 0 0 8 3 1 6 , 4 6 : 0 7 . 7 3 2 . 4 . 3 . 1 0 . 0 . 0 . 2

0 0 0 0 8 4 1 6 : 4 6 , 0 7 . 8 4 2 . 4 . 3 . 1 0 . 0 . 0 . 2

0 0 0 0 8 5 1 6 , 4 6 , 0 7 . 9 5 2 . 4 . 3 . 1 0 . 0 . 0 . 2

0 0 0 0 8 6 1 6 , 4 6 , 0 8 . 0 0 2 . 4 . 3 . 1 0 . 0 . 0 . 2

0 0 0 0 8 7 1 6 , 4 6 : 0 8 . 2 2 2 . 4 . 3 . 1 0 . 0 . 0 , 2

0 0 0 0 8 8 1 6 : 4 6 , 0 8 . 3 3 2 . 4 . 3 . 1 0 . 0 . 0 . 2

0 0 0 0 8 9 1 6 : 4 6 : 0 8 . 8 8 2 . 4 . 3 . 1 0 . 0 . 0 . 2

0 0 0 0 9 0 1 6 : 4 6 : 0 9 . 3 7 2 . 4 . 3 . 1 0 . 0 . 0 . 2

0 0 0 0 9 1 1 6 : 4 6 , 0 9 . 4 8

0 0 0 0 92 1 6 : 4 6 : 1 0 . 0 9

0 0 0 093 1 6 : 4 6 : 1 0 . 1 4

0 0 0 0 9 4 1 6 , 4 6 , 1 0 . 3 1

0 0 0 0 9 5 1 6 : 4 6 : 1 0 . 6 9

2 . 4 . 3 . 1 0 . 0 . 0 . 2

2 . 4 . 3 . 1 0 . 0 . 0 . 2

2 . 4 . 3 . 1 0 . 0 . 0 . 2

2 . 4 . 3 . 1 0 . 0 . 0 . 2

2 . 4 . 3 . 1 0 . 0 . 0 . 2

-R- Requirement 2 . 4 . 3 . 1 0 . 0 . 0 . 2

-R-

-R- [Window cleared)

-R- The Ready mode (Ready- -) , shall proceed t o I n k Load mode

-R- lever) , within 2 seconds when a black ink in preload

-R- position event occurs and the black ink level i s low .

-M- TS { I J OK

-M- SET-READY-MODE { 6 J OK

-Z- {Ready--J

-M- { 6 J OK

-M- HALF BLACK INK-LEVEL { 7 J OK

-M- LOAD-MEDIA (set ink levels { 9 J OK

-Z- { P rinting--J

-Z- HH : 9 8

-M- FORM-FEED 1 1 J OK

-Z- 6 5 4 7 1 0 8 3 7 4 1 2 6

- Z - H E , 7 0 9 LE : 8 3 7 TE : 4 1 2 6 L : 3 2 8 9

- Z - TEND : 4 6 6 6 TS : 4 6 8 2 Rem C : 8

-z- Park : 5 8 9 2

- Z - { Ready-- J
-M- { 1 1 J OK

-M- DECIMAL 3 SECONDS SET-DEADMAN - T I MER { 1 2 J OK

-M- READY WAITFOR-FRONT-PANEL-MESSASGE WAI TFOR-FRONT-PANEL-MESSASGE7

-M- { O J OK

-M- ASSERT BLACK INK- I N-PRELOAD-POS I T ION { I J OK

-M- { I J OK

-Z- BLACK

-M- DECIMAL 3 SECONDS SET-DEADMAN -TIMER (2 J OK

-z- [Pull ink load leve r)

0 0 0 0 9 6 1 6 , 4 6 , 1 1 . 0 8 2 . 4 . 3 . 1 0 . 0 . 0 . 2 -M- PULL
_

LEVER WAITFOR-FRONT-PANEL-MESSASGE WAITFOR-FRONT-PANEL-MESSASGE?

0 0 0 0 9 7 1 6 , 4 6 , 1 1 . 6 8 2 . 4 . 3 . 1 0 . 0 . 0 . 2 -M- { O J OK

0 0 0 0 9 8 1 6 , 4 6 : 1 1 . 7 9

0 0 0 0 9 9 1 6 : 4 6 : 1 2 . 3 4

0 0 0 1 0 0 1 6 , 4 6 , 1 2 . 8 9

0 0 0 1 0 1 1 6 : 4 6 : 1 3 . 0 0

0 0 0 1 0 2 1 6 : 4 6 : 1 4 . 3 2

0 0 0 1 2 1 1 6 : 4 6 : 4 3 . 1 0

2 . 4 . 3 . 1 0 . 0 . 0 . 2

2 . 4 . 3 . 1 0 . 0 . 0 . 2

2 . 4 . 3 . 1 0 . 0 . 0 . 2

2 . 4 . 3 . 1 0 . 0 . 0 . 2

2 . 4 . 3 . 1 0 . 0 . 0 . 2

2 . 4 . 3 . 1 0 . 0 . 0 . 2

-M- ? I NK-SUPPLY-LOW FALS E - I S-SUCCESS I 2 OK

-M- ? I NK-LOAD - I N-PROCESS TRUE- I S -SUCCESS 3 J OK

-M- [3 J OK

-M- ?FAULTED TRUE - I S-SUCCESS { 4 J OK

-M- TE { O J OK

-E- 2 . 4 . 3 . 1 0 . 0 . 0 . 2 Test 1 operation 2 FAILED

0 0 0 1 2 2 1 6 , 4 6 , 4 5 . 2 4 2 . 4 . 3 . 1 0 . 0 . 0 . 2 -Z-
0 0 0 1 2 3 1 6 , 4 6 , 4 5 . 2 9 2 . 4 . 3 . 1 0 . 0 . 0 . 2 -Z- { Ready--J

In this particular example, the test failed due to sloppy typing by a test engineer that misspelled
MESSAGE as MESSASGE, indicated on lines 89 and 96.

1 1 The author regrets to disclose that this exception report listing has been subjected to a little prudent censorship
to prevent confusion. At the end of this test, the printer was reset as a result of the failure. The printer is reset
whenever a failure occurs, to ensure that it (the printer) is in a quiescent state before the next test begins. The
power-up messages contain abbreviated diagnostic messages that are only coherent to the illuminati of the
design tearn. Even I couldn't explain the messages contained therein, hence I am reluctant to print examples
that defy a complete explanation.

2 6 8

4. Using MOTHER

MOTHER is designed to be simple to use. The environment is geared toward speed and response
time. This section describes a simple method for using MOTHER that highlights its flexibility.

4.1 Generating the Software Requirements Specification

To generate the Software Requirements Specification (SRS), one need only do the following
things:

1 . Choose a template, and setup a skeleton of the SRS document. We chose to organize our
document along NASA's SFW-DID-OS. 12

2. Write the requirements, delimited in the source files by the . RQ and . RE macros.

3. At this stage, one could begin writing the tests. May I be so bold as to suggest that it would
be prudent to subject the document to review first? This precaution may prevent effort from
being wasted by writing tests for requirements that may be changed extensively.

4. Write the tests, delimited in the source files by the . TS and . TE macros.

5. Review the tests.

6. Run and correct the tests.

The method for generating the documents for the above steps is described in the following sec
tions.

4.1.1 Generating the Software Requirements Document

To generate the SRS, a special switch is provided in the body of the document to tum the " print
tests" on or off. If no tests are written for the first review of the requirements then the switch is
not of immediate importance.

For later use, the switch will be set to the "on" position to generate copious quantities of docu
mentation, showing the tests in context immediately next to their requirements.

4.1.2 Generating an SRS listing for review of requirements

The following is a brief example of the format of the document when generated with require
ments alone:

1 2 I have never actually seen this specification. I ran across the outline in a book on writing specifications, and
asked our Technical Standards folks to locate it for me. I continued writing from the outline of the standard in
the book while the Standards folks began what became a Quest for the Grail, so to speak. They couldn't locate
anyone at any NASA facility who had heard of this. Since our Technical Standards folks took this as a matter
of professional pride, they wrote to the publisher who forwarded their request to the author. The response from
the author was essentially "never mind"; the author indicated simply that the NASA requirement would be
dropped from the next revision of the book. I wonder if it ever existed at all? It looked nice, but the truth of
the matter is that our SRS may be based on a non-existent standard. Although the standard may be non
existent, the format served us very well.

- 2 6 9 -

Requ i rement 2 . 4 . 1 . 2 . 0 . 0 . 0 . 4

The ready mode (Ready--) , sha l l proceed t o t h e power up mode

(Busy-- S e l f Test) , w i t h i n 1 seconds fo l low i ng t h e r e l e a s e of

t he INPUT PRIME l i n e .

Test De s cr i pt i o n

Sequence -

Re s u l t s -

(set ready mode)

(a s sert i nput prime)

(check for power up mode)

Mode changed t o power up w i t h i n 1 sec .

As can be seen, a summary of the requirement and a simple, straightforward description of the
proposed testeS) are produced together. This simple description of the proposed test allows the

less technically inclined to see the nature of the requirements testing, and allows opportunity for
comment.

4.13 Generating an SRS listing for review of tests

Where the SRS is to be reviewed from a QA engineering standpoint, a copy must be generated
that includes the actual test itself, as in the following example:

Requi rement 2 . 4 . 1 . 2 . 0 . 0 . 0 . 4

The ready mode (Ready- -) , sha l l proceed t o t he power up mode

(Busy--Se l f Test) , w i t h i n 1 seconds fo l l ow i ng t he r e l e a s e o f

t he INPUT P RIME l i n e .

T e s t De s c r i pt i o n

Sequence - (set ready mode)

(a ssert i nput prime)

(check for power up mode)

Re s u l t s - Mode changed to power up w i t h i n 1 sec .

Test :

SET- READY-MODE

RESET

DECIMAL 1 SECONDS SET-D EADMAN-T IMER

WA I T FOR-FRONT-PANEL- D I S P LAY Busy- - Se l f test

? S ELECT FALS E - I S -SUCCESS

The resulting document may be reviewed by test engineers to ensure that the tests do indeed test
the indicated requirement.

4.2 Generating the test suites

Test suites are generated by using the bu i l d_t e s t_s u i t e utility mentioned in the previous
section entitled What is MOTHER?

4.2.1 Manual generation

The test suite may be generated on demand by creating an empty directory and running
the bu i l d_t e s t_ s u i t e utility as mentioned in the previous section. The utility itself gen
erates a test log, and, in our case, with about 1400 to 1500 requirements and their tests, it requires
about 55 minutes to an hour to generate on an unloaded V AX 8650.

- 2 7 0 -

4.2.2 Automated generation using the "at" utility

We have found it useful to generate a test suite using the at utility on our VAX. Every morning
at about 1 a.m., when the VAX load factor is low,13 I run jobs that generate a new set of test
suites (in case we need them), and a printer-ready copy of the SRS.

4.2.3 Inspecting the results

The bu i l d_t e st_s u i t e utility generates output, which I usually redirect to a file
called b u i l d . l og. This audit trail will register any problems or fatal errors that are encoun
tered while building the test suites.

Here is an edited sample of what the log file looks like:

Tue Jun 04 1 99 1 (0 1 : 04 : 4 3 AM) Expand i ng SRS . P l ea s e w a i t .

Tue Jun 0 4 1 991 (0 1 : 0 6 : 0 2 AM) Ext ract i ng t e st s . P l e a s e wa i t .

Tue Jun 0 4 1 99 1 (0 1 : 1 0 : 1 5 AM) Moving t e s t s i nt o a u t oma t i c and manua l t e s t d i rect o r i e s . P l ea se wa i t .

Tue Jun 0 4 1 99 1 (0 1 : 10 : 2 2 AM) Moving t e s t f i l es cont a i n i ng part i a l t e s t s

T ue Jun 04 1 9 91 (0 1 : 2 1 : 5 0 AM) Mo v i ng t e s t f i l e s conta i ni ng W A I T fOR-DRUM-HOME

Tue Jun 04 1 991 (0 1 : 2 2 : 2 9 AM) Mov i ng test f i l e s cont a i n i ng WAIT fOR - D RUM-MOT I ON

Tue Jun 04 1 991 (01 : 23 : 0 5 AM) Mov i ng t e st f i l es conta i n i ng WAITfOR-MED IA- SCAN

Tue Jun 04 1 99 1 (0 1 : 4 9 : 3 1 AM) Mark i n g t e s t s to b e d e f e rred .

Tue Jun 0 4 1 991 (0 1 : 4 9 : 3 4 AM) B l o c k i n g s u i t e s .

Tue Jun 0 4 1 99 1 (0 1 : 51 : 0 7 AM) Count i ng t he s u i t e s .

Tue Jun 0 4 1 991 (0 1 : 51 : 3 1 AM) C l ea n i ng u p . P l ea s e wa i t .

Tue Jun 04 1 99 1 (0 1 : 51 : 3 1 AM) Done .

The readers who have read the section entitled What is MOTHER? will recognize the messages
are from the individual utilities that were used at each step of the bu i l d_t e s t _ s u i t e log.

4.3 Running the test suites

Once the test suites are generated, the running of the test suites is simple. From the PC, one need
only change to the directory that contains the test suite that you care to run. Then it is a simple
redirection of the file. For example, to run the test suite re ady . f o r from the console, the test

technician only needs to type:

mo ther < ready . f or

The automated test harness will then provide the rest of the directions, if any, for the test opera
tor.

4.3.1 Automated tests

Once the test harness has been started, tests that have been sorted into the automated test direc
tory can be run without human intervention. 14 The fully automated tests may be started, and
essentially ignored until they run to completion.

13 This is not to imply it is w1Used. I have received electronic hate mail from folks who are working at 1 a.m.
They were angry because my jobs ran the load factor up for about an hour.

14 Yet another great lie. For printers to operate properly, they require a sufficient amount of ink and paper. When
they run out, the test harness will stop, request a refill of the exhausted resource and patiently wait for the
operator to comply. (There are two great advantages to computers: they perform exhausting and repetitive
tasks without complaining, and they wait patiently for the test engineer to get back from coffee break.)

- 2 7 1 -

43.2 Manual tests

Upon occasion, it is necessary to ask the human operator to do what the harness cannot do: anno
tate test prints with required infonnation (you simply can't trust the printer to do the annotation
itself), load a special size of paper for the test (such as B-size or a metric-sized paper), or any
number of other manual operations.

These tests are sorted into a directory of manual tests, and require close operator attention to run.
They are sorted into the manual test directory by means of keywords placed in a special file, as
described in the previous section What is MOTHER?

4.4 Analyzing the output of the test suites

After the run of a particular test suite, analysis may begin immediately. Bugs from the test suite
fall into three main categories:

1 . Bugs in the printer finnware.

2. Bugs in the test suite (misspellings, etc.).

3. Bugs in the automated test facility itself, such as bugs in the FORTH operators.

The classification of each bug into its correct category is of vital importance to maintaining a
healthy relationship with the design team. This is accomplished by:

1. Generating the test exception reports.

2. Inspecting the test exception reports carefully, and assigning bug classifications.

3. Reproducing bugs to be sure that the classifications are reasonable.

4. Submitting the error reports to the design team.

4.4.1 Generating the test exception reports

The test exception report is generated by using the f a i l u r e_report shell script described in
the previous section. It generates printer ready audit trails of the tests that failed.

4.4.2 Inspecting the test exception reports

These exception reports are then inspected by the test analysts. The test analyst is the most
important element in the test harness operation. We have discovered that, in many cases, the test
suites run faster than the test analyst can analyze the results !

The test analyst is important because often the test analyst can spot mistakes in tests at a glance.
Errors in this category are usually misspellings or misuse of operators. These mistakes are often
very consistent, or "systematic" . Often, systematic errors in the test suites can be quickly
corrected, and the test suite can be run again in the same QA cycle.

4.43 Reproducing bugs and submitting error reports

The next stage is for the test analyst to reproduce the bugs by manually stepping through the test
suite to ensure that the exception is not dependent upon abnonnal conditions. This is done by
simply bringing up MOTHER without redirecting standard input as described previously in the
section Running the test suites. This allows the test analyst to reproduce the bug by typing the
operations manUally, and to experiment with the condition in hopes of gaining additional infor
mation for the design engineering team.

- 2 7 2 -

4.4.4 Submitting error reports

In the final stage of the cycle, the QA test analyst can include the actual text of the test in the bug
report, so that the bug database carries the actual reproducible test for generating the exception.
This provides design engineering with an actual plug-and-play bug generation mechanism that
cuts the time required to reproduce the bug.

When regression testing is done, the "bug closure" procedure already has the test in place for
testing. This shortens the time for regression testing, as a single suite may be synthesized with
tests for all of the supposedly ' ' fixed" bugs that can be tested as a monolithic run, if desired.

- 2 7 3 -

5. Experiences with MOTHER

5.1 A test harness of this nature is a complete project itself

When planning to build a test harness, it is important to acknowledge that a test harness is a pro
ject itself. Basically, there are two things to consider:

1 . Test harnesses need project planning, too.

2. Test harnesses need design evaluation as well.

5.1.1 Test harnesses need project planning, too

One of our major oversights was the time required for the development of the test harness. Sel
dom is sufficient analysis and time given to the correct scheduling of supplemental programs and
harnesses for testing: it is at least as much of an oversight in QA efforts as in design engineering
(perhaps more so).

The reader is strongly advised not to oversimplify the problem of a project within a project.
There are several essential planning elements to consider when building a test harness. These
elements are :

1 . Manpower requirements.

2. Schedule requirements.

3. Performance requirements.

4. Equipment requirements.

All of these requirements hinge upon the definition of the test harness itself, forcing us to deal
with a true paradox:

How do we define the requirements for a test harness whose fundamentaL
requirement is to be flexibLe in its requirements?

With no experience base to work from, this was enough of a problem to prohibit any worthwhile
estimation. Now that we have the figures, which we will share in the next section, the problem is
a little less paradoxical.

5.1.2 Test harnesses need design evaluation as well

We have already stated that the test harness is a project within a project. This implies that, as in
the case of a commercial project, you have a simple choice: either you evaluate the design of
your product or the customer will. In tlns case the customer is the combined design engineering
and QA groups.

- 2 7 4 -

An evaluation phase is almost always a painful one for the design engineers. In this instance, the
design engineers and the QA engineers are one and the same. It is important that during the
design evaluation phase, a certain amount of visibility of this process is given to the design
engineering team. There are two fundamental reasons for this:

1. In the future, the design engineers will be asked to accept the diagnosis provided by the har
ness. It is imperative, therefore, that the design team have confidence in the design of the
test harness.

2. In the future, the design engineers will be also subjected to the criticism inherent in the QA
team 's evaluation of their code. It is imperative, therefore, that the design team does not
feel that they are being required to follow design standards that are more rigorous than those
followed by the QA team.

5.1.3 We can learn from the implementation of the test harness as well

Formal development of a test harness provides a unique opportunity for the QA community in a
company as a whole: it provides a baseline for estimating the effort of future test harness

development.

In this particular effort, the QA team tried to capture as much information as possible. Since this
effort was, for the most part, a different approach than what is usually used, it wasn't apparent
what metrics should be collected. Fortunately, the metrics we did collect seem to be sufficient to
answer most questions about developing and scheduling test harnesses of this genre.

5.2 What worked well?

Many things worked well with our test harness: some things worked much better than expected.

5.2.1 Timely turnaround was achieved

The original QA plan called for three test harnesses and five people. We ended up with one test
harness and three people, myself included. In spite of this, the target two day turnaround was
achieved. If we had had the equipment we originally wanted, we could have exceeded this goal,
perhaps providing one day turnaround. We needed to run three shifts (around the clock) to
accomplish the two day turnaround time, but it was accomplished. 15

We were able to scan tests and provide feedback to the test writers in a matter of hours. The
longest test suite was about five hours long.16 The average test suite run time was two to three
hours long. In this respect, we satisfied the requirement that we provide fast feedback to the test
writers as to the correctness of their tests.

Additions of new test operators were typically accomplished in a matter of an hour or two per
operator. Some new operators were installed as a composition of FORTH operators. In these
cases, the addition of new operators was typically accomplished literally in a matter of minutes.

15 I would not advise anyone to try a single-unit approach as described here. We were required to use a single
unit approach because our Phaser 1/1 Printer prototypes were expensive and extremely hard to come by. The
risk of having a single test harness that may be subject 10 breakdown at inopportune moments makes a single
harness approach less than desirable. Also, running around the clock shifts causes extremely high levels of
stress among the test technicians. Our test technicians went to heroic lengths to accomplish the two day
turnaround.

16 This is an absolute lie. The longest test suite was I I hours long until we fixed it so that it worked as it should.
A certain amount of honesty seems in order here. If a test suite lOok more than a couple of hours to run, we did
a close analysis to determine why it took so long. In every instance the inordinately long test suites took so
long because of some overlooked or unimplemented functionality in the test harness.

- 2 7 5 -

5.2.2 Firmware defects in the product under test were exposed

In the course of installing the test harness and running tests against the prototype Phaser III
Printer, we systematically exposed latent defects in the existing firmware. In short, because we
were using the printer in a manner that was never anticipated, we exposed certain defects in the

Phaser III that may have rarely been seen in everyday use. In some cases, this blatant "misuse"
of the printer may have exposed defects that were lurking in the fringes of the firmware architec

ture itself.

5.2.3 The test harness was "accepted" by the design team

The acceptance of the test harness by the design team was immediate. Although the test harness
was released to the design team at a reasonably late time in the project, the ability of the harness
to reproduce failure conditions delighted the main design engineer.

5.3 What could have worked better?

As is the case with every project, there were instances that left less than desirable conditions for
the evaluation of the test subject. In each of these instances, we needed to provide an alternate
mechanism for bridging the gap left by inadequacies in the harness. 1 7

5.3.1 Hardware interface should have been designed into product

The hardware interface between the test harness and the product was a wiring nightmare. In this
product, the QA team arrived late on the scene, and had no input into the hardware design. It is
no surprise, therefore, that the hardware was not designed with firmware testability in mind.
Since we wanted to use a state-stimuLus-response approach, it was necessary that the test harness
have access to all inputs and outputs used by the firmware. Since access to all firmware input and
outputs was necessary, we were forced to actually disemboweL the printer to gain access to these
signals. 18

5.3.2 Granularity of time domain for test was less than desired

The PCI AT provides a less than ideal time base for our tests. In this instance, we ran our time
domain tests in an environment where we had an eighteenth of a second resolution of time events.
Our test harness took advantage of the system timer tick, and the test harness code intercepted the
timer tick interrupt to set a time base for our deadman timer facility. Games could indeed be
played with reprogramming the system timer chip and passing a reduced number of interrupts
through to the operating system. However, there is another barrier lurking in this scheme: the

basic instruction cycle time. There is a great deal of potential for marrying the test harness with
a programmable logic analyzer for high speed time-domain measurements. This approach is
more promising for solving time-domain issues.

5.3.3 Number of test operators was large and difficult to remember

If you make it possible for people to write a new test operator at a moment's notice, you will find
that people will write new test operators at a moment's notice.

17 This is the real meat of the experience from our perspective. This section is an explicit list of what we will
improve upon the next time.

18 This has its advantages: no one asked to borrow a printer that looked like it was completely disassembled.

- 2 7 6 -

The number of test operators was extremely large and soon became somewhat cumbersome. It is
doubtful that anyone was completely conversant in the entire test description language that
resulted. The test writers developed their own test operators that were prose-like and very
descriptive, while the test analysts developed their own shorthand that made the same operator
easy to type. For instance, the operator GET-ERRORS -REPORT was shortened to GER by test
analysts, yielding two operators that did the exact same thing. While the functionality of the first
is readily apparent in its verbose name, the cryptic shorthand notation is most usable by the
"two-fingered" test analyst who is trying to reproduce the failure of a somewhat lengthy test.
Anyone who uses the approach outlined in this paper may want to ensure that their test analysts
are capable of touch-typing.

5.3.4 Could have used more time to train test writers

We certainly could have used more time to train the test writers. (In fact having actual test writ
ers would have been an advantage: we only had a test writer.) The time required to train the test
writers would have been spent primarily on providing the writing team with better documentation
dealing with:

1 . A list of operators grouped by functionality.

2. A list of operators with FORTH's so-called stack pictures: a list of what needed to be on
the stack before the call, and a list of what was left after the call.

3. A short paper on the philosophy of the test harness.

4. A few real examples of various types of tests.

These four simple items could have saved many hours for our test writer.

5.3.5 The test procedure was horribly tedious

If you make a test harness that even the simple-minded can operate, then you should hire the sim
ple minded to operate it. The use of the technically literate to perform this extremely mundane
task was an inhumane torture. The actual procedure of testing was horribly tedious. 19

5.4 A test harness can have lasting value

5.4.1 A demonstrated method

We now have a demonstrated method for integrating test and specifications while m aintaining

flexibility. This is of particular interest to project managers, since it provides for the flexibility of
the entire product. This strategy provides for an extremely late binding time for the specification,
and this is of the utmost importance for a project such as the Phaser III, where simple changes to
a single element can ripple through the entire system.

19 I'm bragging here: It's one of my fundamental beliefs that when engineering gets exciting, it gets exciting in a
bad way. It is, consequently, a measure of success that this testing process was boring: no ugly surprises. This
test harness performed over 1 ,400 tests with clockwork regularity and consistency. It would be a crime against
humanity to require a human to perform the 1 ,400+ tests with the same accuracy and consistency. Our test
technicians listened to radio and played computer games during the periods when the fully automated tests were
running: they only had to check on the harness every five minutes or so to ensure that everything was running
correctly. In most automated test suites, the Phaser 1I1 would make enough noise loading paper that it was
clear that the system was operating correctly, and only extended periods of silence from the test harness
aroused suspicion.

- 2 7 7 -

5.4.2 It can only get better

We have provided an analysis of the entire effort showing the areas for improvement, and
describing exactly what can be done to improve these areas. None of the areas impacted the qual
ity of the product, but rather these areas were primarily associated with making the entire test har
ness more useful to the customers: the design engineering and QA groups.

5.4.3 A springboard for the next harness

For future products, the test harness as it now exists will cut down on the development effort for
the next generation of harnesses. Since all improvements were incorporated in the harness as we
went along, it seems reasonable to claim that all the server-based tools are 1 00% reusable. The
actual off-the-shelf boards are, of course, reusable. For any new project:

1. The product-specific test operators will need to be changed.

2. The hardware interface should be cleaned up. (Perhaps a single test harness interface con
nection to the product under test is in order.)

3. The Software Requirements Specification (SRS) will need to be written for the new product.

4. New tests will need to be written for the requirements in the new SRS.

In terms of expenses, there are no new capital expenses for the test harness itself: all new
expenses are manpower expenses. All hardware and a large portion of off-the-shelf software20

are reclaimed.

20 Compilers, shell scripts and the like. This does not include the test operators themselves. although a large
number of them may be reclaimed as well.

- 2 7 8 -

6. Conclusion

6.1 Presentation of metrics and numbers

6.1.1 Time to develop test harness

Let me begin by giving a feel for the size of the software in the test harness itself (the PC/AT
based software):

Number of lines of code :

Number of blank l i ne s :

Number of commen t s l ines :

9 2 6 0

4 65 6

1 1 9 8 3

Applying these numbers to Boehms cocomo 2 1 estimation model, w e would project a develop
ment schedule as follows:

Model mode : organi c

Model s i ze : intermediate (92 6 0 lines of code)

Tot al effort : 2 4 . 8 man-months

Total schedule : 8 . 5 months

[1 5 2 man-hour s /man -mon t h)

[st andard calendar mont h s)

D i s t ribut ion s : Ef fort S chedule P e rsonnel

(man -month s) (months) (on-board)

Plans and requi rement s : (0 6 %) 1 . 5 (1 1 %) 0 . 9 1 . 6

Product de s i gn : (1 6 %) 4 . 0 (1 9 %) 1 . 6 2 . 5

Programming : (65 %) 1 6 . 1 (5 9 %) 5 . 0 3 . 2

Det a i led de s i gn : (2 5 %) 6 . 2

Code and unit test : (4 0 %) 9 . 9

Integration and test : (1 9 %) 4 . 7 (2 2 %) 1 . 9 2 . 5

P rogrammer productivity during code and unit t e s t pha s e : 9 3 2 D S I /month .

[DS I = Del ivered Source I n s t ruction s)

In actuality, this harness was developed in two months by two engineers. Needless to say, we
worked twelve-hour days and most weekends. The implications are that there was a productivity
gain of 6.2 over the standard man-month. We did not leverage off of any new technology, we
just worked very hard. Certain productivity gains can be directly attributed to the modularity of
the test harness itself: developing lots of little operators is much like having lots of little projects.
The FORTH interpreter itself consists of 103 1 lines of C code, and has been included in the
above code counts for the sake of simplicity.

21 Reference: Boehm, Barry W. Software Engineering Economics, Prentice-Hall, New Jersey, 198 1 .

- 2 7 9 -

6.1.2 Time to develop tests

This becomes somewhat of a problem, since the development of tests is an ongoing effort: things
were still changing near the end.

We have, at last count, in our SRS (including tests) :

Number of l i ne s :

Number of " word s " :

Number of characters :

Number of requi remen t s :

Number of t e st s :

6 5 8 4 0

1 7 8 5 8 3

1 3 5 0 6 0 6

1 4 2 9

1 4 7 3

Percentage of t e s t s requi ring manual intervent ion : 7 . 9 %

6.1 .3 Time to generate test suites

The generation of test suites took 41 minutes on an unloaded V AX 8650. In addition. it took 2.7
megabytes of disk space to generate the test suites (without the associated log files).

6.1.4 Time to run test suites

There were nine sub-suites that could be run independently. The average time for each of these
sub-suites was about 3 hours. although the longest took 5 hours. The total time to run all nine
automatic test suites was twenty-seven hours. The time required to run the manual suites was
somewhat comparable. but extremely variable depending upon operator response times.

6.1.5 Time to evaluate suites

QA test reports indicate that in the beginning. there is roughly a one-to-one correspondence
between run times and the amount of time required to analyze the log files, although this dimin
ishes to practically nothing as the end of the project nears.22 Once again, this is variable. The
logs indicate that one should allocate as much time to the analysis of the results as to the actual
running of the suites. By running the proper combination of manual and automatic tests, it is pos
sible to keep the test analyst busy running manual tests and then analyzing previous logs while
the subsequent automated tests run. If one is fortunate enough to possess more than one imple
mentation of the test harness. it should also be simple to verify the failures on the second harness
while keeping the first harness " well fed" with test suites.

6.1.6 Time to correct suites

In almost all instances. the errors encountered in the test suites were simple misspellings of the
operators. These can be corrected in a negligible amount of time, within the SRS itself.

Of particular historical significance was the effort involved in converting the test suites (at a very
late date) to a " language independent" format. Language independence was required because
the front panel messages could be specified in one of several languages: German. Japanese.
English, Spanish. French. or Italian. Rather than duplicate each test for each language. we
decided to revise the harness to understand front panel messages in any language. The conver
sion process involved changing the semantics of an operator which watched for front panel
display messages. The operator was to be changed from a postfix oriented operator that used a
character string parameter to a prefix oriented operator that used a constant.

22 This is, of course, because the number of bugs will drop .. , hopefully.

- 2 8 0 -

In this instance, the conversion was relatively easy to accomplish using a PERL script. A caveat
however: when doing such an automated conversion, do not assume that the conversion will be
complete. We chose a new and different name for the revised, prefix oriented operator and it
proved to be a wise choice: the results were a mostly converted SRS, and the remaining uncon
verted operators proved to be a simple job for an editor.

6.2 Will we do it again? You bet! However

Overall, the experience was a positive one. In order to accomplish the same result again, we must
have some of the basic elements we had in the initial effort as well as some new concessions.

6.2.1 More realistic planning for implementation of test harness

" Now that we are done, we know how long it will take. "

In the strongest sense o f the word, this was certainly a high-risk approach i n terms o f effort: The
technology itself was known and proven. The extent and success of this project relied entirely
upon the QA engineers who tackled the problems. As is the case with unplanned projects, the
amount of effort was entirely glossed over. As a result of doing this, we now have an idea of how
long a modification of the test harness should take since we know what sections will have to
change, and we can get an idea of their relative size by examining the current test harness.

In short, the next time around will be faster -- much, much faster.

6.2.2 Quality assurance group retains control of software requirement specification

In order to achieve any sort of success using this approach, the QA group must have control of the
SRS. Without control of the actual framework for such a system, we are hopelessly lost from the

start. Engineering specifications for testability are of the utmost importance to a quality product.

Quality assurance is the domain and responsibility of every engineer, but it is the charter of the
QA group to ensure that it is achieved.

6.3 Acknowledgements and Disclaimers

I feel that every paper should contain appropriate acknowledgements and disclaimers. 23

As the visionary of the MOTHER system, 24 I would be negligent if I did not give proper thanks
to the people who actually made it work. The dirtiest and most horrific implementation problems
were left to two outstanding engineers.

23 Here are the disclaimers:

UNIX is a trademark of AT&T Bell Laboratories.

Turbo-C ++ is a trademark of Borland International, Inc.

PC/AT and/or Personal Computer AT are probably trademarks of International Business M achines Corporation.

PC-NFS is a trademark of Sun Microsystems, lnc.

Ethernet is a trademark of Xerox Corporation.

V AX is a trademark of Digital Equipment Corp.

PERL, grep, pr, RCS, ms, sed, awk, Bourne Shell, troJf, and just about everything else mentioned in this paper
is a product that we used and did not develop: we are not claiming credits or rights to these things. All we did
was glue things together in an interesting way.

24 Someone once suggested that a visionary could be defined as " someone who is most likely hallucinating."

- 2 8 1 -

•

First, my most profound thanks to Doug Bingham, a fellow Software Engineer who specializes in
design. Doug wrote at least half of the 1400+ requirements in SRS by himself, and a full 95% of
the tests. He not only accomplished this in a prohibitive time frame, he never lost his composure
when 1 said I IJustfabricate something, and we' ll implement it in the test harness."

Also, my heartfelt thanks to our hired gun, Alan Downing, who connected the test harness to the
Phaser III printer and implemented a good number of the more arcane operators. Alan endured
extremely long hours, changing priorities, and an absurd implementation schedule.

Thanks also to Gary Hanson for the superb suggestions for revisions to this paper. My thanks to
Jan Maybee, Jack Slingerland, and Ross Taylor, who also proofread the final copy of this paper.
(1 hope 1 got everything right this time.)

Finally, my most profound thanks to our electronics team leader, Howard Goetz, and our project
manager, Ron Adams, for their confidence.

Without the significant efforts of these people, you wouldn't be reading this. Guaranteed.

- 2 8 2 -

The T90 Project:
Self-Restarting Parallel Automated Software Testing

on Multiple Hypercube Architectures

Marc Baber, Walt Harrison, Gary Hartman, Debra Lee
(marc, walth, hartman, debral}@ssd.intel.com

Intel Supercomputer Systems Division
Software Evaluation Group

15201 NW Greenbrier Parkway, MS C01-01
Beaverton, Oregon 97006

PHONE: (503) 629-7600

KEYWORDS:

Software Testing, Software Evaluation, Parallel Architecture, Hypercube, Crash Recovery, Fault Tolerant, Automated
Testing, Parallel Evaluation, Configuration Management

RELEVANCE:

The 1'90 project encompasses advances in automated software testing that include automatic crash/hang recovery and
exploiting parallelism to speed up evaluation.

BIOGRAPIflCAL SKETCHES:

Marc Baber received a B.S. in Computer Science from the University of Oregon in 1985 and is currently pursuing an
M.S. at the Oregon Graduate Institute of Science and Technology. He has worked in the field of system software eval
uation for high performance computer companies including Cray Research, Floating Point Systems and, currently, In
tel Supercomputer Systems Division.

Walt Harrison received a B.S. in Aeronautical Engineering from Purdue University in 1971 and an M.S. in Sociology
in 1974. He then moved to New York city where he worked as a computer analyst/consultant/instructor/programmer
for research organizations, universities, banks and municipalities on a variety of projects. Since 1981 he has worked
in Oregon as a system software evaluation engineer for Tektronix and Intel's Supercomputer Systems Division.

Gary Hartman has worked in the electronic systems business in a variety of careers including hardware technician,
logistics management, technical writer, software development, and software evaluation. He currently manages the
Software Production and Evaluation Department of the Intel Supercomputer Systems Division.

Debra Lee received a B.S. in Computer Applications Management from the University of Portland in 1984, and an
MBA from U of P in 1989. She has seven years of experience in the field of software evaluation, and she has been
employed by companies such as Floating Point Systems, Tektronix, and Test Systems Strategies, Inc. Debra is current
ly a Software Evaluation Engineer at Intel Supercomputer Systems Division.

- 2 8 3 -

The T90 Project:
Self-Restarting Automated Software Testing
on Multiple Hypercube Architectures

Marc Baber , Walt Harrison, Gary Hartman, Debra Lee
{marc, walth, hartman, debral }@ssd.intel.com
Intel Supercomputer Systems Division

Abstract

This paper describes experiences with an automated software testing environment in which
multiple parallel architectures are tested simultaneously in a coordinated, fault-tolerant manner.
The environment is built upon several widely-used Unixfeatures, including a common working file
system supported by NFS, architecture-specific executables and results supported by the make
utility, and mapping of available tests to appropriate architectures/configurations via
configuration environment variables used by the make utility. The problems of hanging tests and
crashes of the system under test (SUT) are addressed by a system restart daemon (SRD) running
on a relatively stable monitor system that detects hung tests and/or SUT operating system crashes,

reboots the attached SUT, and restarts the automated testing procedure (skipping the test that was
running last). A relational database is used to store test results from each version of the system
software for comparison with other versions and for software problem reports.

A complete release evaluation can be turned around muchfaster because multiple host systems,
with or without attached hypercubes, can participate in an evaluation ensemble, some acting as
compile and link servers, while systems with attached hypercubesfocus on execution of the parallel
tests. Redundancy adds to thefault tolerance provided by the SRD to minimize the needfor human
intervention. With T90, it is now possible to leave a test suite running overnight on a half-dozen
hypercube hosts. Each test driver might reboot its attached cube (SUT) perhaps five or more times
with a particularly early version of a release or with numerous new tests that have not been run
previously on all possible configurations. The combined benefits of the SRD and the ability to
coordinate several systems in parallel allows us to perform testing in one weekend and two
working days that would have required up to eight working days or more with our previous
methods.

Introduction

Necessity was the mother of invention for the T90 project. We were in a position of having
more tests than we had time to run and at the same time needed to write even more tests. One
solution to this problem was to hire more people, but has some severe side-effects that we wanted
to avoid. A better solution was to automate the way evaluation tests are run. The project began
when, as a group, we asked ourselves, "How can we evaluate software better and faster by getting
more results from existing resources? How should we perform testing in the 90's?". The project
name, T90, is simply shorthand for the latter quest.

- 2 8 4 -

The problem of having more tests to run than time to run them is not a new one. The 1'90
solution gave us more time by parallelizing the running of tests. This basic approach will work with
any computer system if there is a common interface between systems. The systems we test use a
Network File System(NFS) [Sun86] interface as their common interface, and all are tied to a
common NFS mount point. Thus, a common directory of tests feeds the systems. When we want
more tests per hour, we simply add more computer systems to the mount point.

Instead of automating, we could have used people power. In other words, divide the work
among more people and the more people you have the more tests you can run. This would require
that each new person get a dedicated system of course. We could also have run multiple shifts. The
reason we decided against the people power approach, besides cost, was motivation on the
engineers ' part to off-load the boring task of running tests. A typical release cycle will require all
tests to be run on several versions of the software before it ships to the customer. Imagine sitting
in front of a computer and running the same old set of tests once every two weeks for two months,
and you will see the logic of using evaluation engineers to develop tests rather than actually run
them.

It is necessary to recognize that very few things are free. There is some extra effort required to
write an automated test for the 1'90 test driver . We are convinced, that the extra time spent is
worthwhile. We also recognize that not everything can be automated, so one should also allocate
time for freestyle bug-snooping.

The charter for our software evaluation group is to detect and describe defects in system
software for the Intel line of hypercube multicomputers. The large number of possible
configurations and the wide range of system software features coupled with the desires for
automated testing and rapid turn-around have driven the evolution of a relatively sophisticated
software testing environment.

This paper begins with an overview of the hardware and software that our software evaluation
group regularly tests, along with historical problems encountered. Next, our design of solutions to
the problems is outlined in more or less chronological order, following the evolution of the 1'90
environment. Following that, the success of the 1'90 project is discussed with regard to the project
goals and the results achieved with the T90 environment during evaluation of a recent release.
Finally, related work and ideas for future enhancements are presented.

Hardware Configurations

Our software evaluation duties require us to run tests on a multitude of hardware system
configurations. We strive to run as many tests on as many hardware configurations as possible.
However, time is our enemy and we pick the most likely configurations that are apt to be a problem.
This scenario is similar to most companies in the business of offering a variety of systems
depending upon the depth of the customers pocket-book. The scalable parallel supercomputer
business amplifies this problem. In other words, a single test may be capable of running on tens or
hundreds of typical single processor hardware systems while thousands or millions of
configurations are possible for scalable parallel supercomputer systems.

The scalable parallel supercomputer systems business offers a new dimension in scalability
since the system confi�tions offered are based upon the number of nodes in the system. For
example, the iPSC/860 is offered with anywhere from one to 128 nodes in powers of two. To
complicate matters, a variety of node types are available. Each of these nodes are computer systems
with options for available memory and attached co-processor.

- 2 8 5 -

Our system consists of a System Resource Manager (SRM) connected to a cabinet full of
single-board computers called nodes. The exact number of nodes is some power of two from 0 to
7, meaning 1 to 128 nodes. Nodes communicate with each other by sending messages through a
hypercube-topology network implemented on the backplane of the cabinet.[Int89] The SRM is also
connected through a local area network (LAN) to remote host systems. A remote host system can
be either a Sun 3, Sun 4, or Sun 386i workstation.

Generally, all nodes in the cabinet are of the same architecture, but there are four possible node
architectures. A ex node is based on the Intel386™ microprocessor and has a Intel387 TM floating
point co�ocessor. An SX node has a Weitek floating point accelerator instead of the standard
Inte1387 co-processor. A VX node is a double-board computer that includes a ex node coupled
with a vector floating point unit. Finally, an RX node is based on the Intel860™ microprocessor.
All four architectures can run many of the same tests, however different compilers and/or options
are necessary to produce the appropriate test executables.

Optionally, a hypercube may have one or more I/O nodes which are similar to the ex node
except that they have only one communication channel which connects them to an anchor node
within the hypercube. A SeSI bus interface is included on each I/O node to accommodate I/O
devices which may include hard disks, 8mm tape or 9-track tape units . The I/O node can also
provide a connection to a local area network

Bottom line, we have a lot of combinations of configurations that need to be tested. An
automated solution to start a test, track its results, and in general "baby-sit" the test execution
makes sense.

Subject Software

The iPse software consists of:

Operating systems (for the SRM and nodes)
Networking software
iPSe extensions (commands, libraries, and server processes)
Diagnostic programs

The SRM runs the UNIX System V operating system with iPSe extensions that interface to the
nodes. These extensions let you allocate and deallocate cubes, load programs on the nodes, and
obtain node status information.

Each node runs the NX/2 operating system, which provides message-passing capability,
memory management, and process management. The NX/2 operating system also manages the
numeric co-processor and optional vector processor.

The SRM and the customer's workstations (called remote workstations) also run the Tep/IP
networking software. This software lets you remotely log into other systems on the network and
transfer files between systems.

Optionally, the SRM and remote workstations can run the NFS network file system software.
NFS allows files to be shared transparently over a local network. NFS lets you access files on other
workstations as though they were resident on your own workstation, thus eliminating the need to
log into another system and copy the files.

- 2 8 6 -

Another system option is the CIO Ethernet option. This consists of TCP/IP running on the RX
nodes of the iPSC system, and X Window client libraries that allow you to run and develop X
Window applications that run on the RX nodes.

The iPSC extensions contain application libraries, shell commands, and several background
server processes (or daemons). The libraries provide iPSC system calls that are available to both
host and node programs. Several daemons enable message passing between the nodes and the host.
A typical background process is the file server (called fserver) that runs on both the SRM and
remote hosts. The fserver process allows the node to run standard I/O functions on the host file
system.

An iPSC application can have a host program that runs on either the SRM or a remote host, and
one or more node programs that run on a group of allocated nodes called a cube. iPSC commands
let you control the allocation and operation of a cube.

In summary, the software tested includes NX/2, a UNIX-like operating system for the nodes, a
concurrent file system (CFS), an interactive parallel debugger, TCP/IP network support, X-window
client routines, a profiler, support for cube access by remote host programs, C and Fortran
compilers and other specialized tools and libraries[Int90] . In other words, there is a lot of software
much of which is optional.

The added dimension of optional software adds another twist to the need for more
environments in need of testing. The problem of more environments needing testing and less time
available to actually run tests is typical of most of today's computer systems sold in the commercial
market. The T90 model of automation, providing unassisted testing across a wide variety of
platforms can be adapted for use in almost any testing environment to achieve the same benefits
we have realized.

Historical Evaluation Problems

Prior to the T90 project, testing was performed by a few evaluators each with their own
hypercube system configured specifically for the system software they had to test. Each evaluator
proceeded independently and was generally able to cover one or two architectures for their subset
of the system software within one evaluation cycle.

Automation was provided by shell scripts and the make utility, but since the default rules of
make provided no distinction between objects and executables of different node architectures, one
architecture had to be completed before another could be begun. In addition, test builds and runs
were typically separated into two tasks. Therefore, at least four to eight evaluator interventions per
system were required to test all four architectures for each major software feature. In practice,
hanging tests and hypercube crashes caused by preliminary versions of a software release resulted
in many more interventions and frequent delays since the anomalies tended to occur during
overnight runs when evaluators were not usually available.

The problems with the old approach were several. First, evaluators spent much of their time
running tests and had little time for fault analysis and new test development. Secondly, the
hardware was poorly utilized because of problems with overnight test runs and because it was next
to impossible to schedule rotations of hardware between evaluators to cover all the hardware
configurations. Finally, the proliferation of both new hardware and new software products
overwhelmed the evaluation group, leading to low software coverage.

- 2 8 7 -

Goals for the T90 Project

To address these problems, the T90 project was initiated to modernize our software evaluation
methodology. The specific goals of the project were:

1 . To be able to use any available SRM on the internal ethernet which has the current system
software installed.

2. To utilize available hardware and people more efficiently.

3. To run tests in a shared cube environment in order to test the emerging customer environment
as well as meet goal two.

4. To make automated regression testing proceed in a fault-tolerant manner so that an evaluator
could reasonably expect a test suite to run all night or all weekend once the test driver was started.

5. To provide automatic hang detection, cube rebooting, and test driver restarting performed by
a daemon with an absolute minimum of repeated work after a restart.

6. To design tests to produce result files that can automatically be stored in a relational database
for automatic tracking of bug status.

7. To enhance ease of use for evaluators, technicians, contractors and developers.
8. To combine the test compilation and execution steps into one step.

9. To facilitate the simultaneous testing of all architectures in the same test directory.
10. To allow tests to be run in any order, ultimately using the data base result records to

schedule the most productive tests first, or for overnight stability, to save the tests most likely to
hang the system for last.

A Flexible Test Driver for Parallel Testing

The first task of the T90 project was to centralize the evaluation test code and execution scripts
onto a single system, to simplify source management and provide for easy backup. Access to this

central test base by multiple systems is easily provided via NFS mounts.
With a central test base a test driver can be executed on any system, to execute the tests for the

hypercube architecture attached to that system. The test driver needs to know how to traverse the
central test base directory structure, finding all directories with tests to be executed. To support
multiple test drivers working against a central test base, a locking mechanism is required so that no
two test drivers attempt to generate results in the same test directory simultaneously. The test driver

should manage an evaluation pass, making one complete pass, or circuit, of the central test base
attempting to generate results before deciding that testing should stop. If a test directory was locked
on one circuit, then additional circuits (including only the remaining directories) should be
attempted. The test driver needs to support a set of environment variables [Bab90] for the given
system, and to execute the make utility [ATT89] with a master makefile. With these easily coded
C shell functions the test driver is simple and flexible.

- 2 8 8 -

Intel386
Hypercube

Test directories
and files.

Hypercube with disk array

Hypercube with LAN interface

Cubeless host systems

Sun-3
Remote
Host

Remote host Workstations

i860
Hypercube

Figure 1: Testing within the T90 environment. Multiple host systems (SRMs) with various
hypercube configurations each execute subsets or the tests stored on the NFS server, depending on their
hypercube's hardware configuration. Workstations running remote host software run the same tests in
the remote host mode. Cubeless systems act as compile servers.

Figure 1 shows an overview of a complete ensemble of several hypercube configurations with
both local SRMs and remote workstations executing the test driver in parallel. Environment
variables define the size and type of hypercube architecture attached to the system, and are used in
the master makefile. The master makefile defines separate object and executable suffixes for each
architecture and the rules to compile the test code as well as the rules to execute the test code and
log the results.

A typical 1'90 test directory contains one local makefile, one Bourne shell script to execute the
test and log results, and any test code for the host and/or node. The test code, currently C or Fortran,
usually contains the actual test to be evaluated, with a PASS/FAll... output.

The test driver is designed to process each test directory until it successfully runs the make
utility in every test directory. The make utility is invoked to use the environment variables and read
both the master makefile and the local makefile for the test. If a test directory is locked, by another
system, that directory is placed on the list of directories for the next iteration, and processing
continues with the next directory in the current list. Also, if the make utility terminates with an error
exit that test directory is added to the next iteration list. The test driver also supports various
command line options to specify alternate makefiles, test directory lists and/or number of iterations
to list a few examples.

- 2 8 9 -

Using "make" to Build and Run

In order to combine the test compilation and execution phases of regression testing (goal eight),
it was decided to add test execution rules and test result targets to makefiles that were already used
in the compilation phase. This was easier and more flexible than adding test building commands to
the test run scripts. The make utility also provided an added benefit in that tests are not rerun if their
result files are up to date, so when make executes in a partially completed test directory, it does not
repeat any work done by previous test drivers. This feature, combined with the test driver's ability
to resume testing in the next directory after a restart met goal five for avoiding unnecessary
repetition of work.

The test driver and the SRD know absolutely nothing about test procedures, they merely
facilitate running a large number of tests in a reliable manner. All of the information about building
and running a test is contained in its local makefile, the master makefile shared by all tests and the
test commands (scripts or programs) themselves. A test author can therefore write tests that
perform practically any test procedure that can be invoked by a shell command.

By carefully defining suffix rules in the master makefile, it was possible to minimize the size
of the local makefile needed in each test directory and to rely on the master makefile for rules to
build almost all targets. In addition to rules for objects and executables for each of the architectures,
there are rules for producing execution log files (running the tests), and result files.

Result files contain a single line, each summarizing their corresponding log file including the
name of the test, the hypercube hardware configuration used (encoded in the result file's name), the
network name of the host system, a pass or fail result, and how many seconds the test took to
execute. The execution time is to be used for weighting test results, discovering performance
degradations, and estimating MTBF (Mean TIme Before Failure) for the system software.

Included in each test directory's local makefile are lists of sources, objects, executables, log
files and result files to be generated plus any build and run instructions that are not covered in the
master makefile. Both the local makefile and the master makefile are necessary to run a test (unless
no default rules are used, which is quite rare).

The master makefile contains generic instructions for building and running tests based on a set
of file suffixes that distinguish all known file types in the iPSe system. Figures 2a and 2b show the
relationships between the different file types/suffixes. Each arrow in the diagram corresponds to a
suffix rule in the master makefile.

- 2 9 0 -

_�- TO

DlRECf SOURCE-TO-EXECUTABLE RULES: _------..::---..::::=::-=
Fig. 2b

�-��-��-----
--�� -�-�.--�--

--
----��

�
--

--- �- ...,.,.,..
_---- _------ ----- _----- The host executables

EXECUTABLES: node.rx nOde.ex node.sx nooe.vx have an Informal
dependence on the

node executables
because the host

commands load the
node exscutables onto

SOURCES: the cube.

.,.,..,.,.,.,.
_ .-.:::::--:::---

--.,.,.-.,.,..,.,. ,.,.,.,.,. �

�-- A
.,.,..,.,.-"",,,,,- � �

SOURCE-TO-OBJECf RULES
_-----;:::.. __ ---;::..---� - ----- --- -- ..,.,,""-------- ------

---- .,/
EXECUTABLES: node.rx node.ex node.sx node.vx

OBJECTS: nOd.e.ro nOde.eo nOde. so nOde.vo

SOURCES:

To
Fig. 2b

Figure 28: Rules for Node Executables. All tests must have a host process of some kind, so there are no
rules to generate log files or result files from node executables. The host executable is the only place where
the knowledge about what node executables to run is stored, so the host and node programs may have
different base names without limiting the utility of the default suffix rules, as long as the host executable
uses the correct basename for the executable and appends its own architecture argument as the suffix.

- 2 9 1 -

RESULTS:
There is a 1 : 1 correspondence of host. *L * files to host. *R * files.

LOGS:

OBJECfS:

r
host. SL[csvr] 0

thru

r
host.3L[csvr]O host. L[csvr]O

thru thru
host. [csvr]O

thru
host.SL[csvr]7 host.3L[csvr]7 host.4L[csvr]7 host.CL[csvr]7
host.SL[csvr]m host.3L[csvr]m host.4L[csvr]m host.CL[csvr]m

SOURCES:

In addition to the source-to-object
to-executable rules depicted here,

there are also direct source-to
executable rules that bypass the

host objects altogether.

Figure 2b: Rules for Host executables and Log/Result Files. Log and Result files are derived from host
executables. The informal dependence upon node executables is enforced by deleting aU log and result files
in a directory whenever a new node executable for the same architecture is created.

- 2 9 2 -

The suffixes are defined as follows:

.c .f

.co .so .vo .ro

.cx .sx . . VX .rx

.So .30 .40 .Co

.Sx .3x Ax .Cx

. [S34C]L[csvr] [0-7]

. [S34C]R[csvr] [0-7]

C and Fortran source files
Node object files (CX, SX, VX, RX nodes respectively)
Node executables (CX, SX, VX, RX nodes respectively)
Host object files (SRM, Sun-3, Sun-4, Sun-386i hosts)
Host executable files (SRM, Sun-3, Sun-4, Sun-386i hosts)
Log file from runs, for example:
.SLv5 indicates a log file of a test run with an SRM host and
32 VX nodes. First character indicates host type, "L" indicates
log file, third character indicates node type and fourth character
indicates dimension of the hypercube.
Result files, everything but "R" has the same significance as
for log files.

There are also t90 suffix rules that allow one to request a test be run with the largest available
cube of a specific type. These suffixes are the same as the log and result suffixes except that the
cube dimension is replaced with "m" for "maximum." Whereas the .SLrO thru .SLr7 rules would
request specific sizes (dO-d7 on an SRM host), the .SLrm rule requests the largest available RX
cube. When multiple SRMs are participating in an evaluation, the first test driver that enters the
directory and is configured with at least one RX node generates a result file with its largest RX
subcube. Subsequent test drivers on other SRMs will decline to rerun the test if their largest RX
subcube is no larger than the existing results subcube, but will run the test and overwrite the result
file if they have access to a larger RX configuration.

The master makefile has grown to over 1700 lines at present, more than 1500 lines excluding
comments. Though the file does handle every combination of host architecture, node architecture
and cube size, its size has become a bottleneck because it takes the make utility over two minutes
to parse all of the rules and the parsing is repeated in every test directory. Future versions of the
test driver will make use of the hierarchical features of make to avoid multiple parsing. Another
prospect for improving the situation is to use only the appropriate subsets of the master makefile
for each driver. For example, if a driver is running on an SRM it does not need access to rules for
the other hosts.

Managing Configuration Constraints

Because the software loaded on a system is independent of the hypercube architectures, it is
possible to harness many systems to compile the test code sources. This is typically a one-time
only task per software transmittal, and requires that test executables be generated for each
hypercube architecture. Since this compilation task is early in the evaluation of a software release
many systems and test drivers can be executed in parallel, and the hypercube hardware need not be
present. The environment variables [Bab90] contain the size and type of hypercube architecture
and are used in the master makefile to determine which test results should be generated by
comparing the requested hardware (encoded in the files suffix, as in Fig. 2a) with the available
hardware, described by environment variables. If no hypercube architecture is present the test
sources can still be compiled.

- 2 9 3 -

Individual test drivers take responsibility for attempting to generate test results only for the
hardware present, using the environment variables. The host system, node architecture and
hypercube size are all encoded in the suffix for the test logs and results generated. This allows make
to use the test result suffixes to determine which test results to attempt, given the node architecture
available on any given system, see Fig 2b. Since the master makefile contains both compilation and
execution rules, both steps can be performed for any given test directory, provided the
configuration supports the results to be attempted. For hypercubes with I/O sub-systems the
configurations are too numerous to encode in the file suffix, so the individual tests must manage
these environmental variables and exit gracefully if the hardware will not support the test results.
A graceful exit implies zero, so that the make utility will assume a successful test and the test driver
not attempt the test again on its next iteration. For systems without appropriate hardware the master
makefile rules merely print a notice to that effect, and exit gracefully. This does not inhibit another
test driver on another system from attempting to run the test if the hardware will support the results.

One mechanism used to help manage which tests are attempted is to limit the test driver to a
specified test sub-directory, i.e. Fortran, so that only those results will be attempted. This can be
done as long as the central test base is structured in some formal and logical way. The central test
base was structured to generally match the hypercube system documentation as shipped to
customers. The secondary sub- directories are for the software class, C or Fortran; and the tertiary
sub- directories represent the level of software control, global, message, cube . . . By limiting the
test driver to a single sub-directory we were able to control which tests were attempted.

Another technique used to help manage which tests are attempted is to manually alter the
environment variables, to restrict the size of the hypercube available on the system or to mask
certain hypercube architectures entirely. Of course, by explicitly listing directories to be executed
in a file, one can direct the test driver to attempt any subset of the test directories.

A System Restart Daemon

To meet goal five of the 1'90 project, a System Restart Daemon (SRD) was implemented that
monitors the progress of each test driver running on its host system. If any test driver makes no
progress for over twenty minutes, all test drivers are killed, the local hypercube is rebooted, and all
the test drivers are restarted. The test drivers quickly proceed to the points where they left off
because the list of remaining directories is kept up to date in the /tmp directory or each test driver
and because make does not regenerate files that are up to date. The test directory that was suspected
of causing the system crash or test hang is left locked for later inspection so that the test driver does
not get stuck on a single hanging test.

Communication between the SRD and test drivers is achieved with the time stamps of "pulse
files" in the /tmp directory.

The master make file contains progress reporting in several key rules so that most tests do not
need to worry about reporting progress. Tests that normally run over twenty minutes must update
the time stamp of a "pulse file" periodically to avoid being aborted. The time limit of twenty
minutes was selected because very few of the tests in the test base run longer than that and it is
short enough to detect tests that are hung.

The mechanism for detecting hanging tests is simple and it is based on standard Unix
commands. The daemon is written in C-shell except for several routines written in C for detecting
anomalies other than hanging tests. The SRD executes as a background command running in an
infinite loop. Every twenty minutes, the SRD "wakes up" and performs an "Is -It" of all the test

- 2 9 4 -

driver's pulse files and its own pulse file which retains the time stamp from the previous iteration.
If all of the test drivers have progressed in th9 last twenty minutes then all of their pulse files will
have been touched (with the Unix touch command) at some point in the past twenty minutes and
the SRD's own pulse file will be the last file in the list. The output of the Is command is piped into
the unix tail command to test this assertion. If all is well and the assertion is true then the SRD
touches its own pulse file and goes back to sleep for another twenty minutes. Notice that the time
required to detect a hanging test with this method is between twenty and forty minutes, the average
time being thirty minutes.

If the SRD determines that a test driver has hung, it uses the kill command to kill each test
driver process. The ps command is used to detect orphaned processes which are also killed. After
all the test driver processes and their descendents have been killed, the SRD causes the hypercube
system to be rebooted. After the hypercube is rebooted, the individual test drivers are all restarted
using the commands recorded in their respective pulse files. The SRD defines environment
variables that inform each test driver what directory to resume testing in based on the last directory
noted in each of the test drivers ' log files.

Unfortunately, detecting lack of progress is not enough. A useful SRD must also restart when
erroneous progress is being made. Therefore, whenever a test gets an unexpected failing result it
causes make to execute a quick system confidence test to detect if the system software has become
corrupted. If so, the test driver creates a file that requests a system restart and shuts itself down. At
the next invocation of the SRD, the request file will force a system restart. Examples of a corrupt
system include a system that cannot allocate any subcubes, a system whose disk is full, or a system
whose communication servers have aborted. The list of conditions to check for is relatively short ,
but it can be expanded in the future to accommodate whatever conditions become limits to testing
productivity. Figure 3 shows the decision path for the make utility which allows it to detect
erroneous progress and flag the SRD, if necessary. The flowchart is encoded as a single 57 -line rule
in the master makefile that controls the generation of all result files.

- 2 9 5 -

No

Pass

Run (Next) Test
Redirect all output to log

file.

Concatenate log and
scratch files.

Delete scratch file.

No

Remove log file.
Leave scratch file for

later analysis.

Run "amok"
System Sanity

Test (SST)

Yes

SRD Kills test driver, leaves
lock file for later analysis of

directory, Reboots the cube,
and restarts test driver

Move log file to test.bad
for later analysis

(probable bad test) .

Create t90lk_amok file.
After make completes, test

driver error exits.

Figure 3: Flow of Control between Test Driver, Amok, and the SRD

- 2 9 6 -

Figure 4 shows all the interactions between processes necessary to run the 1'90 test driver on a
host system. Although nonnally a user only directly invokes the SRD and the test driver, other
processes, invoked by the test driver, are also necessary. The hostSys and cubeSum commands
provide infonnation to the test driver that allows it to define a set of configuration environment
variables. The environment variables are inherited by the make utility when it is invoked by the
test driver. When the status of the attached hypercube is in doubt, the rule that generates result files
causes make to invoke the amok command which performs a quick test of the hypercube. If amok
finds a fault, it returns a non-zero exit status to make, causing make to return an non-zero exit
status and create a lock file that signals the test driver to terminate. The amok command also
creates a file (/tmp/t90_rebootcube) which signals the S RD to force a system restart if the
hypercube is determined to be in an unusable state.

1::: cu en Q)
a:: -

o!!!

� (I)

E ::::I t) cu e? Q) a. -
c:: g :c � 0 Q)
� J cu ... en ::::I � 0 Cl = J: E -
8 ::::I q
U Q) .:!II!
C/) � 0..

:r 0 (I) -
A) (-3
=r
RO
"tI en
0
8
a �.

Exit
Status
O=okay

o!!! ;;::
.:!II!

� cuI .:!II! (5 O'l -

1 =bad system

o!!! m g
S' � � en �.

::::I !!!.

o!!! ;;::

Figure 4: T90 test automation executables on each SRM host (Data Flow Diagram)

- 2 9 7 -

� g � � � en
cO'
::::I !!!.

Tracking Results with a Relational Database

T90 is also coordinated with a problem tracking system, which is used when bugs are
submitted. This allows bugs to be matched up with a corresponding 1'90 test for which that bug can
be verified as fixed, or for which the t90 test can verify that a bug exists.

Once all the test results are analyzed, an awk script condenses all the information from all the
result files into a file of SQL (Standard Query Language, or "sequel") statements. These statements
are then used to update the results database [OraSS]. Information contained in the SQL statements
are test pathname, the configuration and name of the hardware system the test ran on, and whether
the test passed or failed. With this information, the database can quickly locate any failing results
for which no bug reports exist as well as unresolved bug reports whose test cases are no longer
failing. The goal is to ensure that every bug report has a 1'90 test case. When a test case is linked
with a bug, it gives the software designers a reference to begin fixing the bug, and it gives the
evaluators a way to verify that old bugs have not resurfaced.

Project Results

The single most outstanding result of 1'90 was that two additional software transmittals were
required in the software release which resulted in a better software release. This achievement was
the result of the number of test failures the evaluation team was able to generate in the early release
cycles; which forced the two additional software transmittals into the overall software release
schedule.

As no surprise, there was additional debug time required as the test driver was implemented;
but this also produced some surprising results. Initially, as the test driver was implemented T90
began generating more results than the evaluation team could summarize. In fact, the number of
initial test failures took an unscheduled amount of time to analyze, delaying one software

.

transmittal.
Almost five hundred tests now conform to the standards required by the test driver. Each test

can produce one or more results for each configuration, which achieved project goals #8 and #9.
At last count, 1'90 generated over 1700 results during a recent evaluation. The SRD is reliable
enough to keep test drivers running on several hypercube systems for a full weekend without
human intervention, satisfying project goals #1 and #2. In one instance, three systems each
required five or six hypercube reboots over the course of a sixty-two hour weekend, and all three
test drivers were still running and generating useful results on Monday morning, project goal #4.

After most of the tests have been compiled typical figures show that 250 to 550 results can be
generated in one 24-hour period. This variation depends on the number of systems participating,
how much compilation is required and how many results need to be generated. Generally, more
systems generate more results, but also increases contention for access to central test directories.
Early in the evaluation process more time is spent compiling the test sources and tends to reduce
the number of results generated. And, later in the process there are usually less results to generate
and more time is spent by the test driver in traversing the central test directories.

Another outstanding result of 1'90 was the SRD, achieveing project goal #5. Without the ability
to monitor, stop and re-start an automated test driver the productivity gained would be limited to
the first test that hung the hypercube. With the SRD we can be assured that the test driver is still
attempting tests around-the-clock and without human intervention.

- 2 9 8 -

Future Research

T90 is also a system that can accept test cases created by others outside of the software
evaluation group. The tests will need a wrapper that will fit with the test driver. This creates a more
thorough test base and contains tests that the software evaluation group would not have the time or
expertise to create. For instance, the X Testing Consortium Xlib tests have been slightly altered to
fit into the T90 system, and that will provide approximately 350 tests to be added to the test base,
with very little actual work done by the software evaluation team. Also, there are plans to include
test cases created by the Applications group. T90 will then contain some real world examples of
programs running on the Intel Supercomputers.

The database format has been set up to contain the size of each software component in KLOC
(lK lines of code) as well as the execution time of each test. We plan to use the information to
produce metrics of test coverage such as test execution time per KLOC of system software code or
number of failures observed per unit of time per KLOC of system software code, and so on. The
database will allow us to experiment with many different metrics and to choose which are the most
useful as more experience with the system is gained.

Another goal of T90 is the idea of a "push-button transmittal" which would allow automatic
through-the-network updating of system software being tested. This could further improve
evaluation turn around time.

The system restart feature depends upon having a stable system connected to the system being
tested. At first, this may appear as merely pushing the problem to a new location (what if the host
system crashes?). We contend that current networking technology makes it possible to extend the
restart feature to heterogeneous systems, each capable of monitoring and restarting the others. The
more systems involved, the lower the likelihood of simultaneous failure.

Short-term research for T90 will be to decrease the time spent in any given test directory and
to decrease the time spend traversing the central test base.

The first goal will investigate customizing the master makefile, to reduce its size for any given
invocation of the test driver. This may mean constructing a makefile for each test driver invocation
as a function of the software available and the node architecture.

The second goal will investigate how to provide the test driver a list of tests to be attempted
based on results needed, not by simply traversing the central test base looking for results to
generate. This could be provided by the relational database described earlier.

Longer term research for T90 would convert the test driver script to Bourne shell to take
advantage of functions and multiple signal handling capabilities. Some of the SRD functions could
then be moved into the test driver, creating a more robust test driver as well as reducing the test
driver/SRD overhead.

Related Work

In Japan, testing tools are ranked as the number one necessity for future productivity
improvement [Nom87] . However, tools are not being used there and the level of people's
knowledge of them is still rather limited. Thus, testing becomes the most troublesome phase in
their software development process. Furthermore, since turnover rates of engineers in Japan is
much lower compared to the United States, the usage of testing tools in the maintenance phase is
lower than it is in the U.S. If there are problems with the software, the original author is still
available for consultation.

- 2 9 9 -

Consequently, the need for testing tools during the maintenance phase may be seen as
unnecessary because the confidence of the bug fix is higher if the original designer is modifying
the software. This is contrary to the environment here is the United States, where there is a higher
employee turnover rate, and often a sustaining engineering team is assigned to the bug fixes. The
sustaining team usually is not the original authors of the software.

Henderson at Hewlett-Packard described an automated test controller called Big Brother
[Hen89] , consisting of two tools, Suiterun and MSPSRUN. Suiterun initiates one or more
MSPSRUN commands and provides a method of specifying groups of tests to be run in paralleL
Each MSPSRUN command sequentially executes test run scripts from a collection of tests in one
"volume". In contrast, parallelism in running 1'90 tests is implicit and occurs when multiple test
drivers are executed. In order to test in parallel on a single system, multiple test drivers can be
initiated on a single host. Midway through the Big Brother project, it was observed that one of the
remaining challenges of the project was that "Human intervention to detect system failures and
perform dumps was required." As a solution, a tool called "Multitree" was developed to detect
system hangs and even performed memory dumps unattended. The capabilities of the Big Brother
system included the possibility of multiple actions to correct a failed SUT (System Under Test)
including the ability to place a phone call to an evaluator and inform him or her that an
irrecoverable error had occurred, essentially a call for help made possible by a voice synthesizer.
The T90 SRD has not reached this level of sophistication, partly because there is no cost
justification for adding more heuristics if we are able to keep our test suites running with 90-95%
certainty that no catastrophic errors will occur during our absence.

Conclusions

The T90 project has achieved many of its goals. The 1'90 test system exists in one location, and
any SRM that has the current software installed can access the directories via NFS. This facilitates
simultaneous testing of the software in the same test directory. 1'90 can also detect if tests for the
desired hardware have already been run and T90 will not run them again, and since T90 has
environment variables that can be changed to fit the size and type of hypercube architecture that
the user desires, tests can be run in a shared cube environment. These two features allow the
hardware to be utilized more efficiently. The SRD provides automatic hang detection, cube
rebooting, and test driver starting. With the SRD, the evaluation team can start a regression run
over night or during the weekend and it would continue to run without any human intervention.
The T90 results have also been stored in a relational database for future reference. This helps the
evaluation team, based on past history, to schedule the most productive tests first and save the most
troublesome tests for last. Storing the results in a database also matches test suites to reported bugs
to aid in tracking the bugs status. The main users of T90 have been the evaluation team; thus, it has
seen little use by technicians, contractors, and software developers. Even with the first use of T90
on a project, the general consensus throughout the company is that 1'90 has provided great benefit,
not only with test execution, but also with the ability to connect with the bug tracking system. This,
in turn, will lead to improved software quality in the Intel line of supercomputers.

References

[Sun86] Sun Microsystems, Inc., System Administration for the Sun Workstation, Publication 800-1323-03,
Revision B of 17 February 1986, Sun Microsystems, Inc., Mountain View, Calif., 1986.

- 3 0 0 -

[ATT89] AT&T, UNIX System V/386 Release 3.2 Programmer's Guide, Vol. 2, Chapter 13, Prentice Hall,
Englewood Cliffs, New Jersey, 1989.

[Ora88] Oracle Corporation, SQL Language Reference Manual Version 6.0, Publication 778-V6.0, Oracle
Corporation, Calif., 1988, 1990.

[lnt89] Intel Scientific Computers, iPSC/2 System Administrator's Guide, Chapter 1, Publication 3 1 1014-004,
Intel Scientific Computers, Beaverton, Ore., 1989.

[lnt90] Intel Scientific Computers, iPSC/2 iPSC/860 User's Guide, Chapter 1, Publication 3 1 1532-006, Intel
Scientific Computers, Beaverton, Ore., 1990.

[Bab90] Baber, M., 1'90 Phase 3: Test Automation Specification, Internal Specification, Intel Supercomputer
Systems Division, Beaverton, Ore., 1990.

[Nom87] Nomura, Toshitsugu, Use of Software Engineering Tools In Japan, ACM, 1987.

[Hen89] Henderson, B. M., "Big brother --Automated Test Controller." Sixth International Conference on Testing
Computer Software, Washington, D.C., May 22-25, 1989. 455

- 3 0 1 -

------------- ---- --- - ------

Predicting Error-Prone Modules in a Large
Evolutionary Development Environment

by

James S. Collofello
Eric Wagner

Computer Science Department
Arizona State University

Tempe, Arizona 85287-5406
(602)965-3 190

Abstract

------ ---

The process of producing a new release of a large software system is a time-consuming and
error-prone process. This process can be improved by restructuring the software system and
improving defect detection processes. Unfortunately with the limited resources available to most
projects it is impossible to apply these improvements to all modules. Thus, a cost-effective
compromise is to identify those modules which are more error-prone than others in the system and
apply the improved defect detection processes to them. This paper describes our research approach
and initial results in attempting to identify error-prone modules in a large evolutionary development
environment.

Biographical Sketch

James Collofello received his Ph.D. degree in Computer Science from Northwestern
University in 1 978. He is currently an Associate Professor of Computer Science. His research
interests include software engineering, software quality assurance and software maintenance. He
has researched and consulted extensively over the last ten years in the software engineering and
software quality assurance areas with several large companies. He has also written many research
articles in this area.

Eric Wagner received his B.S.E. degree in Computer Science from Arizona State University in
1979, and his M.S. degree in Computer Software Engineering from Arizona State University in
1989. Presently he is the Vice President of Product Development for Ithaca Software, developer
of the HOOPS 3D Graphics System. Prior to working at Ithaca Software, he was the Manager of
Quality Assurance and Quality Control at AG Communications Systems.

- 3 0 2 -

Background

Much attention has been focussed recently on predicting error-prone modules in a software
system. Error-prone modules are those modules which have a higher probability of failure than
other modules in the software. If these error-prone modules can be identified, then they might
become the target of restructuring activities or increased defect detection processes. Unfortunately,
much of the research in the area has concentrated on identifying error prone modules in new
development projects. This paper attempts to address this shortcoming by assessing error prone
module prediction approaches applicable in large evolutionary development environments. In
addition, it seems that newer and more-complex predictors are being invented everyday. This
paper compares results of some of the newer, more complex predictors against some of the more
basic, traditional ones.

In the context of this paper, a large evolutionary development environment is defined as one
which meets the following criteria:

• the software product is extremely large and complex (100,000 lines of
source or more) , subdivided into many subproducts (modules), with
numerous interfaces existing between the many software subproducts,

• many designers and maintainers participate in the development (100 or
more), and

• the product development interval is long (1 year or longer).

These criteria lead to the following problems that are more prevalent on larger projects than smaller
ones:

• Very large and complex software products will challenge maintainers in
their abilities to understand and comprehend the intricacies of the operation
and interfaces between the numerous modules (high psychological
complexity). This can make it very difficult to locate all areas affected by a
maintenance change - the probability of large "ripple effects" is quite high.

• Having a large number of designers and maintainers, each working on one,
small portion of the overall system, makes it difficult for any one person to
become a "system expert," knowledgeable in the function of the system as a
"system." Instead the information is fragmented over dozens (or hundreds)
of people.

• Long development intervals are inevitably accompanied by large amounts of
personnel changes. Many of the designers and maintainers will be rotated
into other design positions, other management positions, or will leave the
company altogether. Also new employees will be added to the project on a
continual basis to account for attrition. This can make it difficult or
impossible for a maintenance programmer to locate or access the original
developer, which is a severe handicap during maintenance.

Thus, in a large evolutionary development environment the ability to predict error-prone modules
involves identifying those modules which have a high probability of being modified incorrectly,
i.e., they possess poor maintainability attributes.

2
- 3 0 3 -

In the remainder of this paper, our research approach to developing a set of practical error
prone module predictive measures for large evolutionary development environments will be
described. Some initial results from a case study will also be presented.

Research Approach

Our approach to identifying error-prone modules involves 3 sets of measures as defined below:

1 . code-based measures: measurements which are based on access to
the source code

2 . documentation-based measures: measurements which are based on the
module's documentation and not its code

3 . history-based measures:

Examples of code-based measures include:

1 . lines of code

2 . McCabe measures [1]

3 . Halstead measures [2]

measurements which are based on historical
data collected about the module

Examples of documentation-based measures include:

1 . number of functions performed by a module [3]

2 . external documentation quality [4]

Examples of history-based measures include:

1 . software age [5]

2 . number of revisions

3 . previous defect history

It is our belief that the most accurate prediction of error-prone modules will require analysis of
information from each of the metric sets. Thus, our goal is to investigate the performance of
various candidate metrics from each of the sets and eventually to pinpoint the best combination of
metrics from each set. This paper discusses our initial results in assessing a candidate set of code
based measures. Our set consisted of well-known metrics which are practical to collect in a large
evolutionary development environment. The metrics were chosen based on their ease of
calculation with the belief that simple metrics should be evaluated before more costly metrics are
considered. The metrics are identified and briefly described below:

1 . NCS S

2 . S S

The number of non-commented source statements.

The total number of source statements.

- 3 0 4 -

3 . CPLX

4. LINES

5 . COl\1M

6. COMMD -

7 . MCCB

8 . MCCBD -

9 . ENlE

1 0. ENTI

1 1 . PARM

A McCabe-style complexity metric consisting of the sum of the number of
"IF," "CASE," "WIDLE," "REPEAT" and "FOR" statements added to the
number of procedure calls made by the module.

The number of lines contained in the module.

Lines of comments (LINES - NCSS).

Comment density (COMMILINES)

A McCabe-style complexity metric consisting of CPLX - (number of
procedure calls made by the module).

McCabe density (MCCB/SS).

The number of externally-visible entry points to the module.

The total number of procedures and functions declared within the module.

The number of parameters passed into and out of all procedures and
functions declared within the module.

Case Study

In order to assess the ability of our candidate set of code-based metrics to predict error-prone
modules a case study was performed. Thirty modules representing a cross section of a 1 ,200
module system undergoing evolutionary development were selected for application of the metrics.

NCS S S S CPLX LINES COMM COMMD MCCB MCCBD EN1E ENTf PARM ERRORS

2743 1092 210 5550 2807 .5057 1 58 . 1446 1 2 47 5 1
1761 559 162 4095 2334 .5699 143 .2558 1 4 62 17
3107 1485 309 5793 2686 .4636 200 . 1 346 1 1 2 25 3
1499 601 135 3536 2037 .5760 104 . 1730 1 4 36 4
3447 1082 401 12172 8725 .7 168 272 .25 1 3 1 9 33 12
3050 973 328 6132 3082 .5026 236 .2425 9 9 67 1 1
6000 2523 834 1 1048 5048 .4569 341 . 135 1 1 5 5 32

958 468 129 2609 1651 .6328 78 . 1666 1 2 33 3 1
1090 503 138 2741 165 1 .6023 89 . 1 769 1 1 46 1
2172 87 1 272 4208 2036 .4838 145 . 1664 1 3 14 10
3586 1624 470 8298 47 12 .5678 325 .200 1 54 54 154 33

3 1 3 100 56 909 596 .6556 52 .52 4 4 5 0
1300 712 194 2974 1674 .5628 129 . 1 8 1 1 1 1 8 10 5
1719 623 255 3504 1785 .5094 153 .2455 1 1 3 7 4

29 10 8 244 215 .88 1 1 6 .6 1 1 0 1
14 6 8 232 218 .9396 4 .6666 1 1 0 0

261 108 24 639 378 .59 1 5 17 . 1 574 1 1 2 3
659 302 71 1 895 1236 .6522 25 .0827 1 1 13 2
307 137 88 873 566 .6483 226 . 1 897 1 2 1 1
1 14 57 24 1 1 14 1000 .8976 9 . 1578 3 7 1 0
450 236 1 10 1682 1232 .7324 3 1 . 1 3 1 3 2 1 27 25 2
1 33 67 29 449 316 .7037 16 .2388 1 1 0 1
287 133 96 1059 772 .7289 8 .0601 1 1 0 0

1202 732 403 2363 1 161 .491 3 88 . 1202 2 2 2 0
266 142 44 836 570 .68 1 8 23 . 1619 3 3 0 0
225 139 7 730 505 .69 1 7 1 1 .079 1 10 13 0 3

- 3 0 5 -

139 63 37 746 607 .8136 15 .2380 1 2 0
360 279 1 1 179 8 19 .6946 1 16 .0573 1 1 3
135 87 34 546 4 1 1 .7527 9 .1034 1 1 0

1764 679 305 4397 2633 .5988 169 .2488 20 23 47

Table 1 . Results of Case Study Data Collection

Defect data from one system release representing a calendar interval of 6 months was collected for
the 30 modules. The total number of defects captured for the 30 studied modules was 237. Table
1 depicts the results of the data collection. Each row of the table contains information for one of
the studied modules. The flrst 1 1 columns correspond to the values of the candidate code-based
metrics. The last column contains the total number of errors detected in the module.

In order to determine which of the predictors was most capable of identifying error prone
modules, it was necessary to perform a data correlation. A number of possible correlation methods
were analyzed to determine which would best be suited to the task. However, one overriding
concern strongly directed the type of correlation method that had to be used. Without being able to
make strong assumptions regarding the underlying relationship between the predictors and the
error prone modules, it would not be possible to use any particular type of correlation (such as
linear correlation). Therefore, it was decided that a ranked correlation would be the most useful,
since it would not rely on any particular underlying relationship between the data points. In
particular, in using ranked correlations, the actual data values themselves are not used. Instead,
each data value is replaced with its ordinal rank, indicating its position relative to the other data
values.

In particular, the Spearman coefficient o/rank correlation was chosen [6] . This coefflcient is
calculated as:

6LD� 1
R = I - -�

n(n2- 1)

where n i s the number of data pairs, and D i is the signed difference between any two ranked
data pairs. This formula results in a value between - 1 .0 and + 1 .0, where + 1 .0 indicates a perfect
direct correlation, - 1 .0 indicates a perfect indirect correlation, and 0.0 indicates no correlation.

Choosing a degree of certainty of 99.9% for the data analysis of 30 data pairs, the value of the
Spearman coefficient R would need to exceed +0.55 to show a direct correlation (one value
increasing makes the other value increase), or would have to be less than -0.55 to show an indirect
correlation (one value increasing makes the other value decrease).

Table 2 depicts the results of the Spearman R coefflcients obtained by correlating the various
predictor metrics against the number of errors in each module.

Predictor A2amst Errors

N C S S . 6 6
S S . 7 7
CPLX . 6 7
LINES . 7 7
COMM . 7 7
COMMD - . 6 2
MCCB . 7 9

- 3 0 6 -

0
1
0
9

MCCBD . 1 4
ENTE . 1 6
ENTT . 5 Q
PARM . 7 7

Table 2. Results of Case Study Data Analysis

It is interesting to note that all 3 of the volume measures performed quite well in their ability to
predict the number of errors. Both SS and LINES scored 0.77 , and NCSS scored 0.66. This is
in direct agreement with popular belief that bigger modules will encounter more defects.

The 0.79 score for the McCabe measure was the highest correlation coefficient achieved in the
case study, placing significant value in the cyclomatic complexity measure. Note, however, that
the McCabe density measure (MCCBD) performed quite poorly (0. 14). It seems that, in this
case, raw complexity is significantly more important than the ratio of complexity to program size.

Another interesting note regarding the McCabe metric is its relationship to the volume
measures. When the values obtained for MCCB were correlated against the values of NCSS,
SS, and LINES, values of 0.97 , 0.93, and 0.94 were obtained, respectively. This shows that
complexity is almost perfectly related to program size (as previously reported by others [7]).

In studying the results achieved for "lines of comments" (COMM), an interesting anomaly
occurred. Counterintuitively, the COMM measure scored a 0.77, indicating a direct relationship
between the number of lines of comments and the defect count. That is, as the number of lines of
comments increased, so did the defect count. This is counter to the normal belief that more
comments will result in a more-maintainable module (less defects). To attempt to explain this
anomaly, the values obtained for COMM were correlated against the values of NCSS, SS, and
LINES. Correlation coefficients o f 0.95 , 0.9 1 , and 0.99 were obtained, respectively. This
shows that the number of lines of comments is almost perfectly related to program size - bigger
programs have more comments. Since it was already shown that bigger programs contained more
defects, the anomaly is explained.

Intuitively, the comment density measure (COMMD) received a correlation coefficient of -
0.62, indicating an indirect relationship to maintainability. This relates well to the belief that
having a higher percentage of comments in the code makes the code more maintainable.

The last indicator which performed well is the count of parameters measure (PARM) which
received a score of 0.77. However, a correlation of the PARM measure to the 3 volume measures
NCSS, SS, and LINES resulted in scores of 0.83, 0.75, and 0.84, indicating that the number of
declared parameters is closely linked to the size of the module.

Conclusions and Future Research

Software maintenance has become the primary consumer of today's software development
dollar, and maintenance costs continue to grow even larger. With so much money being spent on
maintenance, the existence of a viable maintainability predictor would be highly valuable to
companies interested in minimizing development costs. Prediction systems capable of highlighting
unmaintainable code, or even poorly-implemented maintenance changes, would be invaluable.

Examining the results from this specific case study, it is interesting to note that the best
predictive metric (and that which is easiest to collect) is simply "program size. " In the environment
of the case study, this would tend to indicate that programmers, who are interested in reducing

- 3 0 7 -

future corrective maintenance costs, should try to implement their modules to be as small as
possible. Also, modules should probably be rewritten and decomposed into multiple, smaller
modules when they begin to get too large. From a testing point of view, system testers should
concentrate their "hot spot" testing on larger modules, since they are likely to contain more defects.

Although this case study was performed in one, particular development environment, the
results achieved have shown that it is possible to predict maintainability. It is interesting to view
the specific results and examine which metrics were best-capable of predicting maintainability, but
the fact that one predictive metric functioned better than some other metric is not nearly as
important as that something worked. Different predictors might function better in different
development environments.

The bottom line is that development organizations should use some form of maintainability
prediction system. Such a system should be viewed as another vital, indispensable tool in the
programmer's tool set - one which offers significant potential for reducing the overall cost of
software development.

This paper has described an approach for identifying error-prone modules in large evolutionary
development environments. The approach consists of developing code-based, documentation
based and history-based measures. Our initial results show that simple and practical code-based
measures may work quite well. Future research must be performed to assess the performance of
the measures for other projects. Additional research must also be performed to assess the ability of
the documentation-based and history-based measures to predict error-prone modules. Finally, the
combination of all 3 sets of measures must be assessed to see if it is possible to increase the
reliability of the prediction process. These investigations are currently underway and will be
presented in future publications.

References

[1] McCabe, T . A complexity measure. IEEE Transactions on Software Engineering SE-2,
12 (December 1 976), 308-320.

[2] Halstead, M. Elements of software science. Elsevier North-Holland, New York, 1 977.

[3] Arthur, L. Programmer productivity: Myths, methods, and murphy's law. John Wiley
and Sons, New York, New York, 1983.

[4] Frost, D. Software maintenance and modifiability. In Proceedings of the Phoenix
Conference on Computers and Communications 1985 (Scottsdale, Arizona, March 20-22,
1985), 489-494.

[5] Liu, c. A look at software maintenance. Datamation. 22, 1 1 (November, 1 976), 5 1 -55.

[6] Gibbons, J. Nonparametric methods for qualitative analysis. Holt, Rinehart, and
Winston, Tuscaloosa, Alabama, 1976.

[7] Henry, S . , Kafura, D., and Harris, K. On the relationships among three software metrics.
In 1981 ACM Workshop / Symposium on Measurements and Evaluation of Software
Quality (College Park, Maryland, March 25-27, 1 98 1), 8 1 -88.

- 3 0 8 -

A Systematic Approach
to Regression Testi n g

A b stract

With increased software complexity and size, more resources are being allocated for testing
during the development and maintenance phases. Typically, modifications of the program and
requirements are followed by testing and debugging activities, which are a major contribution
to the high cost of evolving software systems. In order to reduce this cost, functional and
structural changes must be tested in an efficient manner. Regression testing describes the
selective testing that is carried out to ensure that no adverse side effects h ave been introduced
and that the original requirements are stil l met. This paper describes a systematic approach for
reducing the cost and time involved in regression testing through the use of linear programming
techniques. They can be applied to both programs and requirements to minimise the number of
tests for rerun after modifications have been made and can provide the means for rapidly
assessing the impact of program alterations.

J.Hartmann :

Biograph i cal Sketch

He is a PhD candidate in the Centre for Software Maintenance at the University of Durham.
His research interests include issues relating to software testing and maintenance. Hartmann
received a B S in Computing/Electronics and an M S in Microelectronics from D urham
University. He is a member of ACM and IEEE.

OJ. Robson :

He is a lecturer in Comp uter Science at the University of Durham. His research interests
include software maintenance and software testing. Robson received a B S and MS in Pure
Mathematics from Sheffield University and an MS and PhD in Computer Science from the
University of Hull . He is a member of the British Computer Society, IEEE Computer Society,
and ACM.

Authors' M a i l i n g A d d ress

Mr Jean Hartmann,
Dept. of Computer Science,

Science Laboratories,
University of Durham,

Durham DHI 3LE,
United Kingdom.

Tel : +44-9 1 -374-3658
Fax : +44-9 1 -374-374 1

E-mail : J .Z.W. Hartmann@ uk.ac.durham

- 3 0 9 -

1. Introduction

Evolving software systems undergo numerous modifications during their development
and maintenance. Modifications are made for a number of reasons. They include
enhancements to improve performance and portability, corrections to errors found during
previous test sessions, and the development of new system features.

Past surveys have indicated that approximately 50% of the programming effort is spent in
the maintenance phase of the software lifecycle [24] . As larger and more complex software
systems are developed, the probability of introducing side effects during maintenance
increases. A study by Collofello and Buck [7] found that as many as 72% of the revealed
defects were related to side effects introduced into the unchanged portions of a system.

Regression testing is the selective testing that ensures that no adverse side effects have
been introduced into the system and which verifies that the system still meets its requirements
[1] . Current regression testing strategies suggest the rerunning of a) a set of 'confidence
tests ' , which exercise the main system functionalities, b) a set of test cases which invoke the
modified modules, c) a set of test cases chosen by experienced staff, and d) the entire test
suite.

In general , regression testing is performed numerous times throughout the product 's
lifecycle, and the effort and cost spent on i t can exceed initial development testing. Thus, it is
important to develop an efficient test selection technique for regression testing. It must focus
on the affected parts of the requirements or program, selecting only the relevant set of test
cases from the existing test suite. Most organisations have automated their regression testing
procedure by means of interactive capture-replay tools [23, 1 8] . Although these tools can
provide a significant saving in testing effort, they do not yet provide efficient mechanisms for
automatically determining the subset of test cases that need to be rerun after maintenance.

This paper outlines a prototype software environment to evaluate a test selection strategy
based on linear programming. It allows the impact of modifications to be assessed in terms of
the minimum number of tests that need to be rerun. Furthermore, the prototype can predict
test duration and cost required in revalidating the system, if the user can quantify the time and
cost it takes to create and execute individual tests. The remainder of the paper is organised as
follows: Section 2 gives a brief overview of the current state of the art; Section 3 outlines the
implementation of the prototype: Section 4 explains the test selection procedure by way of an
example; Sections 5 and 6 summarise some relevant background information on program
analysis and linear programming: with concluding remarks and future work presented in the
last section.

2. Test Selection Strategies

2. 1 Backgroun d

Current test selection strategies determine a subset of tests by first analysing a program's
control and data flow. A directed graph called the control flow graph is used to represent the
program under consideration. Each node in the graph represents a basic block or segment,
defined as a sequence of statements where, if the first statement is executed, all subsequent
statements are also executed. Each edge in the graph represents the transfer of control
between nodes. Thus, a path refers to a finite sequence of nodes connected by edges, whose
first node is an entry node and whose last node is an exit node. A simple path is a path which
traverses a program loop in only a few iterations. For data flow, three basic actions are
associated with program variables, namely dej, when there is variable assignment, rej, when
a variable value is used, and undej, where the variable is unavailable. Based on these actions,
Rapps and Weyuker r34 j describe a family of test coverage criteria.

- 3 1 0 -

2.2 Ostrand and Wey uker

Ostrand and Weyuker 1 3 1 1 present their technique as an extension to the ASSET data
flow testing tool 1 9 1 . AS SET rel] uires users to specify a coverage criterion for the program
under consideration, tests are then executed with the tool indicating the percentage coverage
that is achieved. Essentially, data flow testing is based on definition-use associations, (D-U),
in which a program path traversed by a test case exercises a variable definition and its
subsequent use without an intervening redefinition. D-U pairs are defined by a triple, (x,y,z) ,
where x represents the variable, and y and z are the nodes where the variable is defined and
used, respectively. For regression testing purposes, the authors propose that after
maintenance only the newly-created and definition-use pairs based on modified variables
need to be rerun. Harrold [1 2] discusses a similar approach based on incremental data flow
analysis. She extends the control flow graph to support testing history information. For each
definition in a node of the graph, the nodes and edges that use the definition are attached. In
addition, a list containing the nodes where each variable is defined, and a list of all definition
use pairs that are used to meet the coverage criterion, are maintained. Interprocedural data
flow testing is also described , where defin ition-use pairs across subroutine cal ls are
analysed. Another approach to test selection by incremental analysis is presented by Taha et
al. [36] . They also propose ways in which to use the data flow relations to generate new test
cases and outline a strategy for fault localisation and repair.

2.3 Leung and Wh ite

Leung and White [2 1 1 describe a test selection method in which a bit vector is associated
with each node in the control graph. I f a test case i traversed a node, then the ith bit of the
node' s bit vector is set to one. When a node is modified, deleted, or split, the corresponding
bit vector determines the test cases that need to be rerun. The authors also relate test selection
to test suite maintenance, which is concerned with developing new test cases as well as
partitioning existing tests into three categories, namely reusable tests that exercise unmodified
portions of the code, retestable tests covering those parts of the program that have been
modified and obsolete tests which constitute tests which are no longer required and can thus
be deleted from the suite [22] .

2.4 Fischer

Fischer et al. 1 8 1 describe a test selection methodology which uses linear optimisation to
determine a minimum set of test cases to rerun. The technique is based on a directed graph
representation of the program. Connectivity, the direct transfer of control between nodes, and
reachability, the indirect transfer of control, are calculated. Furthermore, variable definitions
and uses are computed for each node in the graph. A set of simple paths is mapped against
nodes to represent the test coverage. After modifications, the reachability and affected
variable references for each modified node are determined. A zero-one integer programming
model is formulated and by solving it a set of tests is selected. This set represents the
minimum number of test paths that need to be executed to ensure that all nodes, which
directly and indirectly interact with the modified nodes, are revalidated.

2.5 Yau and Kishi moto

In the test selection strategy proposed by Yau and Kishimi to [41] a test suite is developed
from the program specification and code. Initially, input partitions are derived from a cause
effect graph that represents the specification, and the reaching set for each node in the
program graph is calculated. A reaching set is the set of all possible paths that start at the
entry node and end at the particular node. Test cases are symbolically executed and allocated
to the different input partitions. To satisfy the test coverage criterion, at least one test case
must cover each input partition. Program alterations result in the technique deriving input

- 3 1 1 -

partitions for the modified program, and the existing test suite is examined to verify that the
testing criterion is still satisfied . If not, new test cases need to be generated by the user. Test
cases from the existing suite are selected based on whether they follow paths in the reaching
set of the modi fied nodes .

3. RE TES T - A Test Selection Prototype

3 . 1 Introduction

A prototype for the evaluation of a test selection strategy based on linear programming i s
currently being implemented to investigate its effectiveness. The main objective is to assess
the impact of modifications on the number of test cases that need to be rerun, where the test
coverage is based on control or data flow criteria. Users must select a coverage criterion and
can input cost and time estimates for creating and executing individual test cases. Once the
prototype has completed its analysis of the program under consideration , the user needs to
generate a set of tests to satisfy the chosen coverage criterion . To simplify the implementation
and to develop a prototype in a short time period, the incremental analysis and updating
mechanisms are not included. This means that users need to specify the type of changes made
during maintenance and the prototype will then select a minimal set of tests to ensure that the
affected program parts are exercised.

3.2 A n Overview

A block diagram of the prototype known as the R Egression T E sting Support Tools
(RETEST) is shown in Figure I . The annotator instruments syntactically correct C programs.
Before parsing an y source code , it invokes the C preprocessor to expand any macros or
header fi les found in the code. If during parsing, any syntax errors are encountered, the tool
will h ighlight these errors and advise users to correct them before resubmitting the code for
analysis .

Both the control and data flow analysers provide an inter- and intraprocedural analysis,
where the control flow within each C fu nction is abstracted into an intraprocedural flow
graph and the call-graph is generated to represent the interprocedural flow. Thus , segment,
branch, or decision-to-decision (DD-path) information is prepared, depending on u sers
requirements. Alternatively, the definition-use associations are generated when the user
specifies a data flow criteria. A simple database has been integrated into the environment to
store the resulting control and data flow information .

As the prototype i s based on a path selection strategy, all test requirements are mapped
against a set of simple paths resulting in a test coverage frequency matrix. Initially, the path
generation tool produces a set of expressions consisting of elementary paths and simple loop
patterns [39] . These are expanded to form a set of unique paths in which the number of loop
iterations is, by default, set to one, but which can be relaxed to two or more, if necessary.

Once a test coverage frequency matrix has been formed, users must execute test data in
order to complete the given matrix. It is recommended that tests should be executed in an
ordered fashion . This entails executing functional , or black-box , tests first and then
subsequently supplementing the test suite with structural, or white-box, test cases. The
analyser will display the coverage that is achieved, and any paths and associated measures
that are still u ncovered.

Due to the lack of incremental analysis tools , RETEST requires users to identify those
areas of code that are directly affected during maintenance, by specifying the C functions and
segment numbers that have altered . The integer programming model consists of two parts,

- 3 1 2 -

where the first part represents the type of reduction that is to be achieved, for example,
choosing the smallest number of tests that need to be rerun, selecting tests to run in the
shortest time period, or for the lowest cost. The other is derived from the test coverage
frequency matrix and a coverage requirement array. Further details on integer programming
and its terminology are given in Section 6. Once completely specified, the model is solved
and the resulting test cases are displayed.

The current test selection prototype is UNIX™ based and has been developed in C. The
Unix development tools, Lex and Yacc, were used in generating the parsers. At present, the
different tools are invoked using a command-line interface, but a graphical user interface
based on X Windows may be added later. By designing the prototype in a modular fashion,
individual components can be extended and used as separate testing and maintenance tools
such as coverage analysers, cross-referencers, and ripple-effect analysers. As part of the
prototype, i t has also been possible to integrate a McCabe's complexity metric analyser and
comments extractor [1 7] .

™ UNIX i s a trademark o f AT&T.

- 3 1 3 -

USER

COVERAGE

CR ITER I A

COST, TI ME

OR EFFORT

DATA

MAINTENANCE

CHANGES

DEFINITION-USE

PAIRS

USER PROGRAM

ANNOTATOR

SEGMENTS/

BRANCHES/

DD-P.ATHS

COVERAGE ANALYSER

lNTEGER PROGRAMMING MODEL

TEST CASES

Figure 1 : A Block Diagram of the Prototype Implementation

- 3 1 4 -

4. Ap plication of Test Selection

In the past, several authors have applied linear programming techniques to structural [33,
25] and functional l 1 9] testing. Their concepts are very similar to the ones expressed in this
paper, which applies them to regression testing [1 5] . Although the following discussion
demonstrates test selection at the unit level, the strategy can be applied equally well to
regression testing at the integration and system level[1 9] . For integration testing, the same
test selection procedure is followed and the interprocedural flow analysis enables control and
data flow test criteria to be applied across function boundaries [1 3] .

Test coverage tools such as TCA T[28] and ASSET[9] are used in validating software
based on control or data flow criteria, respectively. Our test selection strategy can be applied
to test suites that have been established using either of these criteria. More specifically, the
example given in Section 4.2, illustrates test selection based on node or statement testing, and
the all-uses criterion[34] .

The test selection technique described here i s particularly useful when certain conditions
hold :

• If the program requirements remain unchanged, all of the existing test cases are still
valid after the modifications are made. This is known as corrective regression testing
[22 1 ·

• The program being maintained has been validated so that the test coverage frequency
matrix contains sufficient test paths to exercise, at least once, each test requirement.

4. 1 Types of C hanges

At the program level, modifications are made for a number of reasons. They include code
enhancements to improve performance and portability, corrections to errors found during
previous test sessions, and the development of new system features. However, in terms of
the flow graph , they can typically be divided into two categories. They consist of:

• Structural changes, which represent modifications to the flow graph by the addition
or deletion of a number of nodes and edges. As a result of changing the overall
program structure, the tests selected for rerun will probably exercise both unmodified
and new code. This will require users to generate additional test cases to satisfy the
coverage criteria, based on the prototype providing an indication of any uncovered
paths .

• Non-structural changes, which pertain to alterations that are made to variables within
the nodes. Thus, the syntactic structure of the modified program flowgraph is
identical to that of the original , whi le the computations within some nodes are
different. In this case, program changes may cause the selected tests to traverse
different paths, resulting i n new tests being derived to exercise some of the existing
paths, and requiring others to be deleted from the test suite, as they are now
structurally redundant. Once again, the prototype will indicate which paths have been
left uncovered and which paths are traversed by several test cases.

4.2 Test Selection P rocedu re

To illustrate the steps involved in the test selection procedure, a piece of C code is to be
maintained, which has been previously tested using two different test requirements, namely a
control and a data flow criterion. The sample code and its corresponding control flow graph
are shown in Figure 2a-b. The purpose of the C function is to calculate x to the power y,
where both x and y are integers.

- 3 1 5 -

Table 1 shows the test coverage frequency matrix after applying the node or statement
testing strategy. In it, each path represents a test case which exercises a set of nodes, zero,
once, or several times. For example, test path P I traverses nodes 1 ,2,3 , 5 ,6,8 ,9, 10 .
S imilarly, Table 2 illustrates the test coverage frequency matrix after the all-uses criterion has
been satisfied. Here, the test paths exercise the different definition-use pairs that have been
identified during an earlier program analysis. For example, test path P3 traverses definition
use pairs (y, I ,2) , (y, I ,4), (y, 1 , 8), (p,4,6), (z,5, 1 O), (z,5 ,9), and (z,9, 1O) .

In our test selection strategy, program modifications are defined as a series of elementary
changes to nodes, where a modification to node 7, as shown in Figure 2c, results i n a
deletion of the old code, followed by an insertion of new code. When considering a series of
changes to different nodes in the flowgraph, each modification has to be separately analysed
and retested. With RETEST, the user needs to also specify the node number(s)
corresponding to the modification(s).

In the selection of tests based on node coverage, the coverage requirement array, shown
in Table 1 as the last column, indicates those nodes that are directly or indirectly affected by
the modified node. Thi s information is extracted from the reachability matrix (not shown
here), which is generated during the control flow analysis. By logically DRing the rows and
columns corresponding to the modified node, the reachability for individual nodes is
calculated . For the data flow criterion, the coverage requirement array consists are values
which correspond to those definition-use associations in which either the definition node, or
the use node has been modified. The resulting values are given in the last column of Table 2.

Based on the information provided in Tables 1 and 2, two integer programming models
can be formulated, one for each test requirement. To simplify the models, a set of reduction
rules can be applied in each instance.

Z

3:
4 :
7 :
9:

• Remove all test cases that do not traverse the modified node, or affected definition

use pairs .

• Eliminate rows, which are duplicates, contain all test cases represented in the test
suite, and have zeroes for the corresponding coverage requirement.

The final, reduced models and their solutions are illustrated in Figure 3.

= X l +x2 +x3 +X4 +xS +x6 +x7 +xg

xs +X6 � 1
X7 +xg � 1

xs +X6 +X7 +x8 � 1
XS +X7 � 1

Solution : Z = 2, where Test Cases (XS,X7) have been selected to be rerun
Figure 3a : Integer Programming Model for Node Test Selection

Z = X l +X2 +x3 +x4 +xS +x6 +X7 +x8 +x9 +x lO +X l l +X 12

(P,3 ,7) : xS +x6 +X9 +x lO � 1

(P,4 ,7): X7 +x8 +x l l +X 1 2 � 1

(P,7,7):
X9 +x lO +x l l +X 1 2 � 1

(Z,S,7): XS +x6 +X7 +xg +x9 +x lO +x l l +X 12 � 1

(Z,7,7) : X 5 +X7 +x9 +x l l � 1

Solution : Z = 2, where Test Cases (X7,X9) have been selected to be rerun
Figure 3b : Integer Programming Model for All-Uses Test Selection

- 3 1 6 -

vo i d examp l e ()

{
i n t x , y , P ;
f l o a t z ;

1 s c a n f (" t d "' d " , & x , & y) ;

2 i f (y < 0)
{

3 p = - y ;

e l s e

{
4 P = y ;

5 z = l . 0 ;

6 wh i l e (p
{

, = 0)

7 z * = (f l o a t)
p - - ;

8 i f (y < 0)
{

9 z = (1 / z) ;

x ;

1 0 P r i n t f (II ': f \ n il , Z) ;
}

Figure 2a : Sample C Code

6 wh i l e (p ! = 0)
{

7 . 1 i f (p % 2)
{

7 . 2 z * = (f l o a t)

7 . 3 P 2 ;
x * = 2 ;

Figure 2b : The Control Flow Graph

Figure 2c : The Modifications

- 3 1 7 -

� P I P 2 P 3 P 4 P5 P6 P 7 P 8 Reach-

Node ability

I 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1

3 1 1 0 0 1 1 0 0 1

4 0 0 1 1 0 0 1 1 1

5 1 1 1 1 1 1 1 1 1

6 1 1 1 1 2 2 2 2 1

7 0 0 0 0 1 1 1 1 1

8 1 1 1 1 1 1 1 1 1

9 1 0 1 0 1 0 1 0 1

1 0 1 1 1 1 1 1 1 1 1

Table 1 : Test Coverage Frequency Matrix and Coverage Requirements for Nodes

� P I P 2 P 3 P 4 P 5 P 6 P 7 P 8 P 9 P I O P I I P I 2 Affected

D-Us D-Us

(X 1 7) 0 0 0 0 1 1 1 1 1 1 1 1 1

(Y, 1 ,2) 1 1 1 1 1 1 1 1 1 1 1 1 0

(Y, 1 ,3) 1 1 0 0 1 1 0 0 1 1 0 0 0

(Y, 1 ,4) 0 0 1 1 0 0 1 1 0 0 1 1 0

(Y,1 ,8) 1 1 1 1 1 1 1 1 1 1 1 1 0

(P,3 ,6) 1 1 0 0 1 1 0 0 1 1 0 0 0

(P,4 ,6) 0 0 1 1 0 0 1 1 0 0 1 1 0

(P,3,7) 0 0 0 0 1 1 0 0 1 1 0 0 1

(P,4,7) 0 0 0 0 0 0 1 1 0 0 1 1 1

(P,7,7) 0 0 0 0 0 0 0 0 1 1 1 1 1

(Z,5,7) 0 0 0 0 1 1 1 1 1 1 1 1 1

(Z,5, 10\ 1 1 1 1 1 1 1 1 1 1 1 1 0

(Z,5,9) 1 0 1 0 1 0 1 0 1 0 1 0 0

(Z 7 7) 0 0 0 0 0 0 0 0 1 1 1 1 1

(Z,7,9) 0 0 0 0 1 0 1 0 1 0 1 0 1

(Z,7, l0\ 0 0 0 0 1 1 1 1 1 1 1 1 1

(Z,9, 10 1 0 1 0 1 0 1 0 1 0 1 0 0

Table 2 : Test Coverage Frequency Matrix and Coverage Requirements for All-Uses
- 3 1 8 -

5. Inter- and Intraprocedural Analysis

This section summarises some background information on control and data flow
analysis. Both theoretical and practical issues are discussed.

5. 1 C ontro l Flow

5. 1 . 1 Connectivity and Reachabi l i ty

When considering graphs, the direct and indirect flow between nodes needs to be
calculated. The former is referred to as the connectivity and the latter as the reachability. For
example, if node a was directly connected to b, and node b was connected to node c, then
node a is indirectly connected to c. To compute the reachability of a specific node using its
connectivity requires a transitive closure algorithm. Many examples of such algorithms exist,
including the Warshall algorithm[37] .

5. 1 .2 Path Generation

As mentioned earlier, the prototype i s based on a selection strategy in which test
requirements are mapped against a set of simple paths. The resulting test coverage frequency
matrix includes elementary paths and paths in which loops are v isited at least once [30] .
Although structural testing using a graphical path has i ts weaknesses and may contain
numerous infeasible paths[1 6] . Lin and Chung [25] propose an i terative solution to this
problem. They suggest solving the integer programming model with the user identifying any
infeasible paths in the solution. These paths can then be removed from the existing test suite
and the model resolved . Subsequently, the above steps are repeated unti l all paths in the
solution are known to be feasible. In our test selection strategy, we follow a similar
approach.

5.2 Data Flow

I n the past, many publications have addressed the subject of data flow and its problems.
As programming languages became more sophisticated, concepts such as information hiding,
data abstraction, and dynamic data structures were introduced. Subsequently, authors
adapted their methods to address problems with pointer aliasing, function call side-effects,
and reference parameters [4,29,2,38j . However, most methods provide only approximate
algorithms for resolving these problems. Currently, the inter- and intraprocedural data flow
analysis of C software is under investigation [321 .

Data flow testing criteria are based on the analysis of variable references in a program.
These references are identified by the variable's name and defi ni tion locations. When a
variable name denotes multiple references, however, they can be difficult to track. This
problem appears, in particular, when arrays and pointers are used. Ideally , each array
element should be treated as a separate variable. However, it is usually not possible to
statically determine the specific element to which an array occurrence refers . The simplest
solution is to treat each definition or use of an array element as an access of the whole array.
Some research has been conducted to investigate these data flow problems[6] . With pointer
variables, a new dummy variable is created for every level of indirection implied in their
declaration. During parsing, all references to the original pointer variable are then analysed
and allocated to one of the associated variables, if necessary. The RETEST prototype is
based on work conducted by Xue[40 1 .

- 3 1 9 -

5.3 Incremental Analysis and Updating

A significant task , that h a s not been addressed or implemented, in the RETEST
prototype, is the construction of an underlying, preferably incremental mechanism, for
compiling and updating the differences in testing history, and control and data flow between
test sessions. Moreover, such an analysis needs to be performed at both the inter- and
intraprocedural level. Most advances in this area can be attributed to Ryder [27, 35] , and
accurately recalculating data flow dependencies at the interprocedural level has not yet been
achieved [5] . Therefore, the prototype will initially be enhanced so that, between test
sessions, any program differences are identified via an exhaustive control and data flow
analysis rather than an incremental analysis.

6. Integer Program ming

Every integer programming model consists of two parts.

The first part represents the type of reduction that is to be achieved, namely the minimum
number of tests, or the minimum effort, or cost required to rerun the tests. This is known as
the objective function, Z. An objective function can either be minimised, or maximised. For
test selection , the objective function is to be minimised. Each algebraic term expressed in Z
relates to a test case from the ex isting test suite and a coefficient that represents a weighted
cost or time factor.

The second pan i s derived from the test coverage frequency matrix, and a set of integer
values, known as the coverage requirement array. Together they represent a series of
constraints that are placed upon the objective function. When considering control flow
criteria, the coverage requirement array reflects the reachability of the modified segment or
branch. In terms of data flow, the array represents the definition-use associations that have
been affected by the mod ifications.

Mathematically, the class of problem that is being defined by the test selection strategy is
known as set c()vering 1 3 1 . Theoretically, it i s considered to be NP-complete [l O] which
indicates that there i s no defi n it ive algorithm to solve such problems in a reasonable amount
of time. However, in practice, impl ic it enumeration techniques and heuristics can be
applied[26] . Two important goals for optimisation are to reduce the overall size of a given
model and improve the efficiency of the solving algorithms. For the former, a set of
reduction rules can be usedf 1 1] , while the latter considers implicit enumeration algorithms
such as those discussed by Lemke et al . [20] .

An alternative use of integer programming i s in the selection of a representative set of test
cases to exercise system requirements[1 91 . Thi s is achieved by identifying redundant test
cases and therefore reducing the overall size of test suites. Preliminary research on test suite
reductions, based on heuri stic s, has been conducted by Harrold et al. [1 4] .

7. C onclusion and Future Research

At present, the RETEST prototype is being evaluated using a suite of C programs, which
vary in size and program complexity. With the prototype, the impact of modifications is
being assessed in terms of the minimum number of tests that need to be rerun. By including
the time, cost and effort spent executing individual tests, regression test duration, effort, and
cost can be predicted . To illustrate the effectiveness of different test coverage criteria for
regression testing, we can select different criteria, define a set of maintenance changes, and
use the prototype to choose those test cases that need to be rerun. We regard our prototype
more as a suppon environment, which would be used to complement any regression testing
tool s .

- 3 2 0 -

Future research will be d irected towards refining and extending the prototype
environment. In particular, the problems associated with the inter- and intraprocedural data
flow analysis of C need to be investigated in more detail. Moreover, an incremental analysis
tool needs to be defined and implemented.

8. Acknowledgem ents

Jean Hartmann i s sponsored by British Telecom Research Centre, Martlesham Heath,
Ipswich, IP5 7RE, U .K. and would like to thank them for their support. He would also like
to acknowledge the referees for providing some useful comments on the paper.

9. References

[1] "IEEE Standard Glossary of Software Engineering Terminology". IEEE Computer
Society Press, Los Alamitos, 1 983.

[2] A l len, F . E . and Cocke, J . "A Program Data Flow A n al ys i s Procedure",
Communications of the A CM, vol. 1 9, no. 3, pp. 1 37-47 , M arch, 1 976.

[3] Balas, E . and Padberg, M . W. "Set Parti tioning". In Combinatorial Programming :
Methods and Applicatiolls, Reidel Publishing, ed . Roy , B . , pp. 205-58, 1 974.

[4] B arth , J .M. "A Practical Interprocedural Data Flow Analysis", Communications of
the A CM, vol. 2 1 , no. 9, pp. 724-36, September, 1 978.

[5] Burke, M.G. and Ryder, B .G. "A Critical Analysis of Incremental Iterative Data
Flow Analysis Algorithms", IEEE Transactions on Software Engineering, vol. SE-
1 6, no. 7, pp. 723-8, July, 1 990.

[6] Calliss, F .W. and Cornelius, B .1 . "Dynamic Data Flow Analysis of C Programs".
In Proceedings of 2 1st Annual Hawaii International Conference on System Sciences
(HICSS) , IEEE Computer Society Press, Los Alamitos, pp. 5 1 8- 23, January, 1 988 .

[7] Collofello, 1 . S . and Buck, J .1 . "Software Quality Assurance for M aintenance", IEEE
Software, vol. 4, no. 5, pp. 46-5 1 , September, 1 987.

[8] Fischer, K.F. , Raji , F. , and Chruscicki, A . " A M ethodology for Re-Testing
Modified Software". In Proceedings of National Telecommunications Conference,
IEEE Computer Society Press, Los Alamitos, pp. B6.3. 1 -6, November, 1 98 1 .

[9] Frankl, P .G. , Weiss, S .N . , and Weyuker, E .J . "AS SET: A S ys tem to Select and
Evaluate Tests". In Proceedings of International Conference on Software Tools,
IEEE Computer Society Press, Los Alamitos, pp. 72-9, April, 1 985.

[1 0] Garey, M.R. and Johnson, D.S . Computers and Intractability: A Guide to the Theory
of NP-Cmnpleteness . Freeman and Company, 1 979.

[1 1] Garfinkel , R . S . and Nemhauser, G . L. Integer Programming . John Wiley ,
I nterscience, 1 972.

[1 2] Harrold , M.1 . "An Approach to Incremental Testing", Technical Report 89- 1 ,
University of Pittsburgh, 1 988.

[1 3] Harrold, M.J . and Soffa, M.L. "Efficient Computation of Interprocedural Data
Dependencies". In Proceedings of International Conference on Computer
Languages, IEEE Comp uter Society Press, Los Alamitos, pp. 297-306, M arch,
1 990.

- 3 2 1 -

[1 4] Harrold, MJ. , Gupta, R. , and Soffa, M.L. "A Methodology for Controlling the Size
of a Test Suite". In Proceedings of Conference on Software Maintenance (CSM-90),
IEEE Computer Society Press, Los Alamitos, pp. 302- 10, November, 1 990.

[1 5] Hartmann, J . and Robson, O J . "Techniques for Selective Revalidation", IEEE
Software, vol. 7, no. 1 , pp. 3 1 -6, January, 1 990.

[1 6] Hedley, D . and Hennell, M.A. "The Causes and Effects of Infeasible Paths in
Computer Programs". In Proceedings of International Conference on Software
Engineering (ICSE) , IEEE Computer Society Press, Los Alamitos , pp. 259-66,
August, 1 985.

[1 7] K uhn , D . R . "S tatic Analysis Tools for Software Security Certification". In
Proceedings of 1 1 th National Computer Security Conference, pp. 290-8, 1 988.

[1 8] Leach , D . M . , Paige, M . R . , and Satko, J . E. "AUTOTESTER: A Testing
Methodology for Interactive User Environments". In Proceedings of 2nd Annual
Phoenix Conference on Computers and Communications, IEEE Computer Society
Press, Los Alamitos, pp. 1 43-7, March, 1 983.

[1 9] Lee, J .A .N . and He, X . " A Methodology for Test Selection", Journal of Systems
and Software, vol . 1 3 , no. 3, pp. 1 77-85, November, 1 990.

[2 0] Lemke, C .E . , Salkin , H . M . , and Spielberg, K . "Set Covering by S ingle-Branch
Enumeration with Linear- Programming Subproblems", Operations Research, vol.
1 9, no. 4, pp. 998- 1 022, July/August, 1 97 1 .

[2 1] Leung, H.K.N. and White, L. "A Study of Regression Testing", Technical Report
TR 88- 1 5, University of Alberta, September, 1 988.

[2 2] Leung, H.K.N. and White, LJ. " Insights into Regression Testing". In Proceedings
of Conference on Software Maintenance(CSM-89), IEEE Computer Society Press,
Los Alamitos, pp. 60-9, October, 1 989.

[2 3] Lewis, R . , Beck , D.W. , and Hartmann, J. "Assay - A Tool to S upport Regression
Testing". In Proceedings of 2nd European Software Engineering Conference
(ESEC'89), pp. 487-96, September, 1 989.

[2 4] L ientz, B . P. and Swanson , E . B . Software Maintenance Management. Addison
Wesley , 1 980.

[2 5] Lin, J .c. and Chung, C.G. " Zero-One Integer Programming Model in Path Selection
Problem of Structural Testing". In Proceedings of COMPSAC'89, IEEE Computer
Society, Los Alamitos, pp. 6 1 8-27, September, 1989.

[2 6] M tiller-Merbach, H. "Modelling Techniques and Heuristics for Combinatorial
Problems". In Combinatorial Programming: Methods and Applications, Reidel
Publ i sh ing, ed. Roy, B . , pp. 3-27, 1 974.

[2 7] M arlowe, T J . and Ryder, B . G . "Hybrid Incremental Al ias Algorithms". In
Proceedings of 24th AnnuaL Hawaii Conference on System Sciences(HICSS), IEEE
Computer Society Press , Los Alamitos, pp. 428-37 , January, 1 99 1 .

[2 8] Miller, E. "Advanced Methods i n Automated Software Test". I n Proceedings of
Conference on Software Maintenance(CSM-90), IEEE Computer Society Press, Los
Alamitos, pp. 1 1 1 , November, 1 990.

- 3 2 2 -

[2 9] Myers, E.W. "A Precise Inter-Procedural Data Flow Algorithm". I n Proceedings of
8th Annual ACM Symposium on Principles of Programming Languages (POPL), pp.
2 1 9-30, 1 98 1 .

[3 0] Ntafos, S . C. and Hakimi, S . L. "On Path Cover Problems in Digrap h s and
Applications to Program Testing", IEEE Transactions on Software Engineering, vol.
SE-5, no. 5, pp. 520-9, September, 1 979.

[3 1] Ostrand, T.1 . and Weyuker, E.J. "Using Data Flow Analysis for Regression
Testing". In Proceedings of 6th Annual Pacific NorthWest Quality Assurance
Conference, pp. 2 33-48, September, 1 988.

[3 2] Ostrand, T.1 . "Data Flow Based Testing Techniques". In Proceedings of Eight
Pacific Northwest Software Quality Conference, pp. 2 1 8-27, October, 1 990.

[3 3] Popkin, G.S . "A Binary Programming Solution to a Problem in Computer Program
Testing", PhD. thesis, Polytechnic Institute of New York, Brooklyn, NY, January,
1 987.

[3 4] Rapps, S . and Weyuker, E.J. "Selecting Software Test Data Using Data Flow
Information", IEEE Transactions on Software Engineering, vol. SE- l l , no. 4, pp.
367-75, April , 1985.

[3 5] Ryder, B .G. and Paull, M.e. "Incremental Data-Flow Analysis Algorithms", ACM
Transactions on Programming Languages and Systems (TOPLAS), vol. 1 0, no. 1 ,
pp. 1 -50, January , 1988 .

[3 6] Taha, A . B . , Thebaut, S . M . , and Liu , S .S . "An Approach to Software Fault
Localization and Revalidation Based on Incremental D ata Flow Analysis". In
Proceedings of COMPSAC'89, IEEE Computer Society, Los Alamitos, pp. 527-34,
September, 1 989.

[3 7] Warshall, S . "A Theorem on Boolean Matrices", fournal of the ACM, vol. 9, no. 1 ,
pp. 1 1 -2 , 1 962.

[3 8] Weihl, W.E. "lnterprocedural Data Flow Analysis i n the Presence of Pointers,
Procedure Variables, and Label V ariables". In Proceedings of the 7th Annual ACM
Symposium on Principles (�tProwamming Languages (POPL), pp. 83-92, 1980.

[3 9] White, L.1 . and Wiszn iewski, B . "S ILOP: A Tool for Path Testing of Computer
Programs with Loops", Technical Report TR-CES-90-06, University of Alberta,
April, 1990.

[4 0] Xue, B . "CPAT - A C Program Analysis Tool", Beijing Information Technology
Institute, 1 989.

[4 1] Yau, S . S. and Kishimoto, Z. "A Method for Revalidating Modified Programs in the
Maintenance Phase". In Proceedings of COMPSAC'87, IEEE Computer Society
Press, Los Alamitos, pp. 272-7, October, 1 987.

- 3 2 3 -

On Testing Expert Systems Software

Guillermo A. Francia III and Andrew H. Sung

Department of Computer Science

New Mexico Tech

Socorro, NM 87801 , U .S .A .

Internet : francia@nmt .edu, sung@nmt .edu

Tel : (505) 835-5209, Fax: (505) 835-6329

Abstract

Expert systems are becoming more complicated and finding more applications in various

areas. Since failure of expert systems may result in costly losses, establishing quality

assurance procedures to ensure the reliability of such systems is of great importance to

their development.

Software quality assurance relies on testing and validation. Many of the traditional

software testing techniques and tools , however, are not directly applicable to expert systems

software, particularly those implemented in logic programming languages. To establish

objective quality assurance procedures, formal criteria need to be defined for the testing

of expert systems so that testing efforts may be measured and directed quantitatively. In

this paper, a collection of testing criteria for expert systems is defined and analyzed. These

criteria are designed specifically for testing the knowledge bases (KBs) of expert systems

that are implemented in logic programming languages.

Biographical Sketch of Authors

Guillermo A. Francia III received his B .S . degree in Mechanical Engineering from

Mapua Institute of Technology, Manila, Philippines, and his M.S . degree in Computer Science

from New Mexico Tech, Socorro, New Mexico. Francia is currently working on his Ph .D .

degree in Computer Science at New Mexico Tech. His research interests include expert

systems , software testing and validation , numerical computation , and parallel processing.

Andrew H. Sung is associate professor and chairman of the Computer Science

Department at New Mexico Tech . His research interests include parallel processing, software

engineering, expert systems , and computational complexity. Sung received his Ph .D . from

State University of New York at Stony Brook.

- 3 2 4 -

On Testing Expert Systems Software

Guillermo A . Francia III and Andrew H. Sung
Department of Computer Science

New Mexico Tech
Socorro, NM 87801, U.S.A .

Internet: sung@nmt. edu, francia@nmt. edu
Tel: (505) 835-5126, Fax: (505) 835-6329

Abstract

Expert Systems (ESs) are becoming more complicated and finding more applications in
various areas. Since failure of expert systems may result in costly losses, establishing quality
assurance procedures to ensure the reliability of such systems is of great importance to their
development.

Software quality assurance relies on testing and validation. Most of the traditional
software testing techniques and tools, however, are not directly applicable to ESs software,
particularly those implemented in logic programming languages. For example, due to the lack
of control-flow and data-flow concepts in Prolog equivalent to those in procedural languages,
the commonly applied code-based testing criteria for conventional software such as statement
coverage or branch coverage are not immediately usable for testing Prolog-implemented ESs.

Many research projects are aimed at building software tools to facilitate the construction
and validation of ESs. To establish objective quality assurance procedures, formal criteria
need to be defined for the testing of ESs so that testing efforts may be measured and directed
quantitatively. In this paper, a collection of testing criteria for ESs is defined and analyzed.
These criteria are designed specifically for testing the Knowledge Bases (KBs) of ESs that
are implemented in logic programming languages .

I Introduction

Expert systems (ESs) have found a great number of applications in various areas. Since
the failure of ESs may result in costly losses, establishing quality assurance procedures to
ensure their reliability is of great importance to the ESs developers.

It has long been recognized that program testing is an expensive undertaking
[Myer79] . It is estimated that up to 50% of the total software development costs goes
to testing. Considerable advances on testing methodologies for traditional software have
been made during the past two decades.

Many research projects are aimed at building software tools to facilitate the construction
and validation of ESs. To establish objective quality assurance procedures, formal criteria
need to be defined for the validation of ESs so that testing efforts may be measured and
directed quantitatively.

For conventional software, the more widely used code-based testing criteria are statement
coverage, branch coverage, and (variations of) path coverage, which require that test data
exercise every node, branch, or path, respectively, in the program graph [Myer79] . Another

- 3 2 5 -

group of testing criteria that has been studied more recently deals with data-flow testing
which is based on exercising selected paths in a program flowgraph with test data [FrWe88,
LaK083] . These criteria were proposed to complement the control-flow-based criteria.

Test criteria for ESs have been proposed in [ViAy90] which encompass both the coverage
of elementary entities and the flow paths of a KB system. One criterion-the coverage of
elementary entities, specifies the generation of test data that would manipulate all the rules,
facts, classes of objects, and their attributes in the KB system. Another criterion relies on
the precedence graph of the rules and facts in the KB to cover all the flow paths in the
KBS. This scheme closely resembles the branch and path coverage criteria in conventional
imperative software testing.

Culbert , et al . put forth the fundamental issues of ES validation and verification in
[CuRS87] . They pointed out the importance of a well founded methodology of system
development in carrying out effective validation and verification processes. General as well
as specific issues such as those used for the NASA space program on Validation & Verification
of ESs are very well documented in this treatise.

There are a number tools that have been built specifically for ESs validation. One well
known system is the TEIRESIAS program [DaLe82] which was written in order to automate
the knowledge base debugging process for MYCIN. Programs for verifying KBs completeness
and consistency are discussed in [SuSS82, CrSt87, and PLPN89] . An ongoing project at
Lockheed, the EVA (Expert System Validation Associate) , is described in [SCSC87] j the
goal of the project is to create a generic tool which can validate applications written in any
ES shell by translating the language of the shell into a declarative metalanguage.

II Testing Criteria for Expert Systems

Error Classification for ES Software

In [GiRi89] , errors in ESs are classified as follows:

¢ expert knowledge error. This is an error that would likely be attributed to the expert .
The expert may give an erroneous information which is propagated in the system.

¢ semantic error. This is an error that is caused by miscommunication between the expert
and the knowledge-a situation wherein the expert misunderstands the knowledge engineer,
or the expert gives the correct information but the knowledge engineer makes an erroneous
translation or entry into the knowledge base, i .e. , the knowledge engineer misunderstanding
the expert , or vice-versa.

¢ syntax error. This is an error that is caused by incorrect forms of rules and/or facts
that were entered into the knowledge base.

¢ inference engine error. This is an error that is caused by incorrect pattern matchings
and resolutions.

Errors are detected during testing by observing that the answer (or conclusion, advice,
etc.) produced by the ES on an input query differs from the correct answer (intended by the
expert or experts whose knowledge is encoded in the KB) j or, for those applications where
correctness of reasoning is important, by observing that the sequence of reasonings made by
the ES on an input query differs from the correct sequence. In this paper we do not address

- 3 2 6 -

the issue of ES evaluation; it is assumed that an oracle capable of deciding the correctness
of test results, whether it be a human expert or a group of experts, exists to help conduct
testing. We make the further assumption that the expert system shell is correct; and thus
we restrict ourselves to testing the KBs of ESs.

Due to the lack of control-flow and data-flow concepts in logic programming equivalent
to those in procedural language programming, the commonly applied code-based testing
criteria for traditional software, such as statement coverage or branch coverage, are not
directly applicable to ESs implemented in logic programming languages. Consequently,
testing criteria for ESs need be specifically defined to facilitate objective measurement
of testing coverage and to guide testing efforts. In this section, we define and analyze
several code-based testing coverage criteria for rule-based ESs written in logic programming
languages such as Prolog.

Control-Flow-Based Criteria

We start by defining three control flow testing criteria: clause coverage, path coverage,
and branch coverage. These criteria are defined to require the coverage of all nodes, all
edges, and all paths in the rule-flow graph of the ES. (A rule-flow graph is a graphical
representation of a knowledge base with nodes representing clauses and edges representing
clause invocation sequence [ChSt88j .)

To overcome the possible deficiencies of control-flow-based criteria, some data-flow
based criteria are also presented. They are defined in terms of variable definitions and uses,
and serve as the logic program testing counterparts of data-flow criteria for conventional
procedural program testing.

Clause Coverage Criterion

The simplest testing criterion for logic programs is clause coverage, that is, exercise each
clause at least once, where a clause is "exercised" when it's head literal is unified with a
current goal during a search.

Consider the KB of an ES containing n clauses Qt , Q2 , . . . , Qn , where each clause has a
maximum of m subgoals (a clause with a head and subgoals is a rule, and a clause with a
head and no subgoals is a fact) , thus clause Qi has the general form Qi :- Qil , Qi2 , . . . , Qim.
Suppose that Qi has arity k, then Qi can be invoked by a query ?-Qi(Xl , X2 , . . . , Xk) , where
all the Xi'S are variables. Thus, testing an ES with n clauses using clause coverage requires
a maximum of O(n) queries or test cases.

Path Coverage Criterion

A most thorough testing of a KB would involve testing all possible input queries or all
feasible searches. A search can be represented by a path, namely a sequence of numbers
indicating the clauses that are selected for unification during the search. Since the set of all
feasible searches can easily be infinite, this criterion of path coverage-an essentially similar
criterion to the path coverage of conventional software testing-is not practical.

To approximate path coverage, we can make a partition of the set of feasible paths into
a finite number of subsets, and then select a representative path from each subset. Finally,

- 3 2 7 -

test cases or queries are constructed to traverse the selected representative paths . However,
since it is generally impossible to decide whether an arbitrarily given path is feasible, the set
of all feasible paths can not be known beforehand. To implement a path coverage testing
method, rule-flow graphs can be used to describe all paths (including infeasible ones) .

For example, figure 1 i s a rule-based system and its rule-flow graph, taken from [ChSt88] .
The set of all paths of this system can be described by the regular expression

13*25 + 13*26 + 13*27 + 13*28 + 14* 25 + 14*26 + 14*27 + 14*28 + 1 {3+4)*25 + 1 {3+4) *26
+ 1{3 + 4)*27 + 1{3 + 4)*28.

There are 12 terms in this expression, each of which may be considered an "equivalence
class" in that different paths which are described by the same term differ only in the number
of times a particular loop-indicated by *, the closure operator-is traversed. So, if two
representative paths are selected from each term (say, one of them skips the loop and one of
them traverses the loop once) , a set of sixteen paths is obtained, e.g. ,

{ 125, 126, 127, 128, 1325, 1326, 1327, 1328, 1425, 1426, 1427, 1428, 13425, 13426, 13427,
13428} .

For each path in the set , a query i s then designed to traverse it. In this case, four test cases
are generated since only four of the sixteen paths-128, 1325, 1428, 13428-are feasible, i.e.
these are the only paths that can possibly be traversed in the program.

(1) grade(Name, Grade) :- student(Name, Answers),
expect(N _ questions, Correct_answers),

r _answers(Answers. Correct_answers, N _rights),
Ratio is N _ rights/N _questions,
Score is Ratio* lOO,
compute �rade(Score, Grade).

(2) r _ answers([], [].0).

(3) r_answers([X I Yj,[X I Z],Rl) :- r_answers(Y, Z, R),
Rl is R + 1 .

(4) r_answers(U Yj,L I Z],R) :- r_answers(Y, Z, R).

(5) compute_grade(Score,a) :- Score > = 90.

(6) compute_grade(Score,b) :- Score < 90, Score > = 80.

(7) compute_gradc(Score,c) :- Score < 80, Score > = 70.

(8) compute_grade(Score,f) :- Score < 70.

Figure 1 : ES 1 and its Rule-Flow Diagram

- 3 2 8 -

Branch Coverage Criterion

Branch coverage testing-to cover all the branches of the flowchart of a program
[Myer79]-has often been applied by industry as one of the quality assurance steps for
conventional software. For ESs, a similar branch coverage criterion can be defined in terms
of rule-flow graphs, that is, generate enough test cases to cover all the branches of the rule
flow graph. This is almost the same as the node coverage criterion as given in [ChStSS] ,
except that the goal here is to cover all branches rather than all nodes. We note that
the node coverage criterion of [ChStSS] is essentially the "statement coverage" criterion for
Prolog programs.

For example, to do a branch coverage testing of the system given in figure 1 , a minimum
of four test queries need be designed to cover all the branches in the graph, since there
are four directed edges from node 2 to the four terminal nodes. The set of four paths
{ 12S, 1325, 14333326, 1333334427} is a minimal test set to satisfy the branch coverage
criterion because all the four paths are feasible and they cover all the branches in the graph.
Branch testing requires no more than O(n) test queries.

Branch testing is not able to uncover many kinds of simple errors. In the above
example, the four test cases cover all the branches and all the clauses in the KB; however,
if the predicate "�" in the subgoals of clauses (5) or (7) were erroneously written as ">" ,
then the error will not be detected by branch coverage. A stronger criterion than branch
coverage would require that , in addition to all the branches , all the conditions take on all
possible outcomes at least once. We call this criterion "branch condition coverage" , which
is equivalent to the "multiple condition coverage" criterion in conventional software testing
[Myer79] .

In the previous example, to do branch condition coverage, sufficient test queries must
be generated to cover the seven conditions Score is <70, =70, 70 < Score <SO, =SO, SO <
Score <90, =90 , >90. This would require some longer input queries, for instance, to make
the Score exactly equals to 70 or 90 requires that the shortest queries contain ten answers,
or a multiple of ten .

Since in many KBs a large number of the rules are written to merely encode
"IF _THEN -ELSE" -type structure in decision making, a testing procedure that applies
branch condition coverage to all such rules will be more useful than branch coverage in
detecting errors. It can be estimated that branch condition coverage requires O(n * m) test
cases.

Data-Flow-Based Criteria

The following definitions of data-flow-based criteria have been greatly influenced by the
work of Rapps and Weyuker [Ra WeS5] on the same subject for traditional software.

We will start with some basic definitions. A variable definition is the first appearance
of a variable in a predicate (we assume that every variable name is distinct in the program;
furthermore, a variable must not be an alias of a variable that has been previously defined) .
A variable can be used for either computation or in a boolean predicate.

- 3 2 9 -

A start node of a rule-flow graph corresponds to a clause that is invoked from the topmost
query. An exit node is a leaf node in the rule-flow graph. A path, P, is a finite sequence of
nodes in a rule-flow graph that commences at a start node and ends at an exit node.

def(i) is the set of variables that are defined in node i; e-use(i) is the set of variables
that are used for computation in node i ; p-use(i) is the set of variables used in boolean
predicates in node i .

Following some of the concepts first introduced in [Ra We85] , we define three data-flow
criteria.

All-du-paths Criterion

A du-path wrt X, where X is a program variable, is a path that includes a pair of nodes
i and j , such that X E def(i) n e-use(j) or X E def(i) n e-use(j). A set of paths, D,
satisfies the all-du-paths criterion if it includes all du-paths of all variables .

All-de-paths Criterion

A dc-path wrt X, where X is a program variable, is a path that includes a pair of nodes
i and j , such that X E def(i) n e-use(j). A set of paths, D, satisfies the all-dc-paths
criterion if it includes all dc-paths of all variables .

AU-dp-paths Criterion

A dp-path wrt X, where X is a program variable, is a path that includes a pair of nodes
i and j , such that X E def(i) n p-use(j). A set of paths, D, satisfies the all-dp-paths
criterion if it includes all dp-paths of all variables.

The all-du-paths criterion requires the coverage of all the usage in computations and
in boolean predicates of all variables; the all-dc-paths criterion (all-dp-paths criterion) ,
requires that all computation uses (all boolean predicate uses) of a variable be covered.

Given n clauses in an ES, each of the three data-flow testing criteria requires a maximum
of O(2n) queries to be satisfied, even though this worst case scenario should be extremely
unlikely (most ESs should need no more than O(n2) test cases to satisfy the three criteria) .

As an example, consider the following program and query:

(1) QI (A, B, AB) : - PI (A, AB) , P2 (A, B) , P3 (B, D) .
(2) PI (A, C) : - A is 2 * C.
(3) P2 (A, B) : - A = < 0, B is ABS(A) .
(4) P2 (A, B) : - A > 0, B is SQRT(A) .
(5) P3 (B, D) : - D is B + 12 .

: - QI (A, B, 5, X) .

Two dp-paths for variable A are 1-2-3-5 and 1-2-4-5, note that these two also happen
to be dc-paths wrt Aj two dc-paths for variable B are 1-2-3-5 and 1-2-4-5; To satisfy the
all-du-paths criterion wrt variable A, both paths 1-2-3-5 and 1-2-4-5 must be exercised.

- 3 3 0 -

Subsumption Relations of Criteria

A testing coverage criterion C1 subsumes another criterion C2, denoted C1 --+ C2, if
any set of test data that satisfies C1 also satisfies C2. If neither one subsumes the other, the
two criteria are said to be incomparable [DaWe83] . The subsumption relations among the
families of data-flow and control-flow criteria is as follows: path coverage --+ all-du-paths
--+ branch coverage --+ node coverage --+ clause coverage; and all-du-paths --+ all-dc-paths;
and all-du-paths --+ all-dp-paths.

Dynamic and Incremental Criteria

The previous criteria apply to prolog programs that do not have the ability to alter
themselves at runtime. Unfortunately, for some ESs, this is not the case since the dynamic
behavior-however controversial-may be required for knowledge elicitation or for other
application-specific reasons. This self-altering effect occurs whenever modifying predicates,
such as assert and retract in Prolog, build and remove in OPS5 [BFKM85] , and excise,
assert, and retract in CLIPS [Giar89] , among others, are invoked.

We first give the definitions of some terms, some of which are adapted from the logic
program flow analysis work of Debray [Debr87] . A predicate p is dependent on a predicate
q in a program, written pDq, if q occurs in a body of a clause whose head unifies with
p. An example clause is p : - ' " q A predicate q is reachable from predicate p,
written pRq, if either pDq or there exists a predicate r such that pDr and rRq. Thus, R is a
transitive relation. The reachable set of p, denoted T(p) , contains p itself and all predicates
reachable from it , i .e . , T(p) = {q I pR*q} , where R* is the reflexive and transitive closure
of R. The system predicates assert and retract , and predicates containing assert or retract
as subgoals are called modifying predicates. Suppose p is a modifying predicate. G(p) , the
globally reachable set wrt to p, is a subset of T(p) ; and it contains non-modifying predicates
in T(p) that are reachable from predicates not in T(p) . I(p) , the independent set wrt p, is
T(p) - G(p) .

Example
Given the following program

a : - q, s.

p : - q, assert((r : - t , u)), s .

m : - retract((n : - y, z)) .

In addition to assert and retract , p and m are modifying predicates; T(p) = {p, q, r, s , t , u}
and T(m) = {m, n , y , z} are reachable sets of p and m; G(p) = {q , s} and G(m) = 0 are
globally reachable sets; I(p) = {p, r, t , u} and I(m) = {m, n, y , z} are independent sets.

Dynamic Data-Flow Criteria

Let T(a) (T(r)) be the reachable set wrt a, an assertive predicate (r, a retractive
predicate) and D be a set of test data.

D satisfies the all-asserts criterion if for every set T(a) , in the system, where a is assertive,
there exist test data from D that cause every predicate in T(a) to be invoked at least once.
This criterion requires that all the predicates that are reachable from a modifying predicate

- 3 3 1 -

be tested; stated differently, all the parts in the program that can be reached by the ripple
effect of an added clause need to be tested. It augments the static clause coverage criterion
since it requires that all clauses , which are not present during the static analysis phase and
are added during runtime, are to be exercised at least once.

D satisfies the all-retracts criterion if for every set T (r) in the system, where r is
retractive, there exist test data that cause(s) every predicate in the set G(r) to be invoked
at least once. This criterion ensures that predicates that are reachable from both r (the
retractive predicate) and other predicates in the program are exercised. Furthermore, it
only requires coverage of globally reachable sets because after the retractive predicate r is
invoked, the independent sets contain no reachable predicates.

Incremental Validation Criteria

Even as the aforementioned criteria are meant to address the static and dynamic nature
of the system, the inherent characteristics of ESs-knowledge expansion and contraction, is
another area that needs to be also considered. As rules and facts are added to and deleted
from the system, re-establishing confidence in it through regression testing is required. Thus,
methods and criteria to facilitate regression testing need also be developed.

An effective regression testing (or incremental validation) method should be involved
only on parts of the system that are affected by the expansion or contraction of its rules and
facts. Thus, we need to define criteria that will concentrate on these local changes.

In the following, we introduce incremental validation criteria based on two categories :
rule-based and data-based. The rule-based criteria concern the consistency and
completeness of the ES as it evolves. The data-based criteria will depend on incremental
data-flow analyses of the system after its modification.

Two rule-based validation criteria are the consistency criterion and the completeness
criterion. The consistency criterion is satisfied whenever a new rule is entered into the
system, the system is checked for consistency; for example, a consistency algorithm may
check for (a) redundancy, (b) conflict , (c) subsumption, (d) unnecessary clauses, and (e)
circularity. The completeness criterion is satisfied whenever a new rule is entered into the
system, the system is checked for completeness ; for example, a completeness algorithm may
check for reachability and attribute validity [NPLP85] . Note that these two criteria are not
testing criteria unless the consistency and completeness checking algorithms actually involve
testing the ES on selected queries .

Two data-based incremental testing criteria are the all-new-paths criterion and the all
modified-paths criterion. The all-new-paths criterion requires testing all the new du-paths
of all variables after an ES is modified. The all-modified-paths criterion requires testing all
du-paths of all variables that have been modified after an ES is modified. (Let S 1 be the set
of all du-paths of the original ES , and let S2 be the set of all du-paths of the new ES. Then
S2 - S1 is the set of all new du-pathsj and S1 n S2 gives the set of all modified du-paths .)

Some Functional Criteria

Similar to structural or code-based testing, the basic idea of functional testing is
coverage-generate enough test cases to exercise all the functional components of the ES,
and a usual method to achieve coverage is partitioning-the input domain is partitioned into
(not necessarily disjoint) sub-domains containing inputs which cause the ES to behave in

- 3 3 2 -

similar manners, and then a test set is formed by selecting a representative input from each
sub-domain.

Functional testing criteria and test generation methods such as equivalence partitioning,
special value testing, and cause-effect graphing are general enough to be applicable to
ESs . Since it is common for ESs to have finite output space with discrete outputs (e.g. ,
identification systems) , the method of output equivalence partitioning is particularly useful .

For example, the ES for grading (figure 1) produces four different answers-the grades
of a, b, c, and f. To conduct a test based on output equivalence partitioning, a test set
containing four cases need be generated to cause the ES to give the four different answers.
Phrased as a criterion, this amounts to exercise enough test cases to produce each different
answer or conclusion at least once. This criterion clearly requires only a number of test cases
equal to the number of conclusions in the ES . (Simpler identification systems may even have
finite discrete input space. Such systems essentially implement decision tables or boolean
functions and can be more easily tested, see the next section) .

Two other functional testing criteria for ESs are to invoke all the questions that can
be asked by the ES of the user, and to invoke all possible sequence of reasonings. The
former criterion is important for any ES that interactively solicits information from users,
the latter criterion is important for ESs whose correctness depend not only on giving correct
conclusions but also on making the correct sequence of reasoning.

To apply the criterion of covering all sequences of reasoning, a set C = {Gt , G2 , . . . , Gk} ,
containing all intermediate and final conclusions in the ES that are critical to correctness
is first identified. Then test cases must be selected to exercise all sequences of reasoning
< Gil , Gi2 , . . . , Gid > that can possibly be made by the ES , where Gij E {Gt , G2 , . . . , Gk} is
the jth intermediate conclusion in the sequence of reasoning. In the worst case the number of
test cases required becomes exponential in d, the length of a reasoning sequence of maximal
length, although this should be extremely unlikely for most ESs (k*d is a more realistic
estimate of the upper bound on the number of test cases required) . The set C should be
judiciously selected to contain only the critical intermediate and final conclusions of the
ES such that there is only a finite number of possible reasoning sequences. Therefore, the
(potentially infinite) input domain is mapped to the finite domain of all possible reasoning
sequences , and the criterion provides another approximation of path testing.

A deficiency of rule-flow diagrams is that they only indicate the possible sequence of rule
invocations during a search but can not represent the backtrackings that may occur during
a search for multiple solutions. Clauses with the same head in a KB can be classified as
mutually exclusive-those that will never be invoked together for any input query, such as
clauses (5) , (6) , (7) , (8) of example 1 ; mutually inclusive-those that will always be invoked
together during a search, such as clauses (3) and (2) , (4) and (2) of example 1 , or clauses
(3) and (4) , (5) and (6) , (7) and (8) of ES 2 (figure 2); or mutually non-exclusive-those
that may or may not be invoked together for an input query, such as clauses (3) and (4) of
example 1 . Correspondingly, testing criteria can be defined and analyzed for different levels
of coverage of the three classes of clauses . For example, testing can be conducted against the
criterion that all sets of mutually inclusive clauses must be covered by test inputs , or under
the criterion that all sets of mutually non-exclusive clauses must be covered by enough test
inputs that demonstrate both inclusion and exclusion.

The latter criterion, when applied to ES 1, requires at least two test inputs-one
containing all correct (or all incorrect) answers to show exclusion of clauses (3) and (4);

- 3 3 3 -

the other containing both correct and incorrect answers to show inclusion of (3) and (4)
since (3) and (4) are mutually non-exclusive. For ES 1 , this test set of two inputs also happen
to satisfy the criterion of covering all sets of mutually inclusive clauses, since there are only
two sets of mutually inclusive clauses, namely ((3) , (2)) and ((4) , (2)) .

[1] facility(Pers,Fac) :- book_due(pers,Book) , ! , basicl'acility(Fac) .
[2] facility(Pers,Fac) :- genl'acility(Fac) .
[3] basicl'acility(reference) .
[4] basicl'acility(enquiries) .
[5] additionall'acility(borrowing) .
[6] additionall'acility(interlibrary Joan) .
[7] genl'acility(X) :- basicl'acility(X).
[S] genl'acility(X) :- additionall'acility(X).
[9] booLdue("C. Walter" ,bookl009) .
[10] book_due("G. Brown" ,book6512) .
[1 1] booLdue("M. York" ,book3355) .

Figure 2: ES 2 (A library facility program) [CIMeS4]

Mutation analysis is an error-based testing method that is directly applicable to ESs
software. One simple way to define a mutant operator is to interchange the conclusions of
the ES, i .e . , mutants are obtained by replacing every conclusion with every other conclusion.
For an ES containing n conclusions, this gives a set of n2 - n mutants; then test data are
generated to kill the non-equivalent mutants.

Consider ES 1, for example, four different conclusions are produced by the ES , so twelve
mutants are generated by the mutant operator. If the ES under test is correct, then all twelve
mutants are incorrect and non-equivalent , a set of four test queries, where each query leads
the ES under test to a different conclusion, will be sufficient to kill off all twelve mutants. It
is easy to see that for small ESs like ES 1 , a test set that is generated for mutation analysis
or by output equivalence partitioning will also satisfy (or close to satisfy) the conclusion
coverage criterion.

III Testing Procedure and Test Data Generation

A Testing Procedure for Expert Systems

How thoroughly does an ES need to be tested? The answer, of course, depends on the
application served by the ES and its reliability requirements; 90% branch coverage might be
good enough for most ESs while totally unacceptable for others. The testing coverage criteria
presented in the preceding sections provide a basis for measuring testing thoroughness of ESs.
A feasible testing procedure that is reasonably inexpensive and useful is recommended as
follows:

<> step 1 : Check for consistency and completeness of the ES . (There are a number of
algorithms in the literature for doing this, e.g. [NPLPS5, CrStS7, PuurS7]) ;

<> step 2 : Select a functional criterion, and generate test cases to satisfy the criterion.
Test the ES on these cases.

- 3 34 -

o step 3: Select a structural criterion that is incomparable to, or that subsumes the
functional criterion used in step 2, and generate more test cases to satisfy the
criterion. Test the ES on these supplemental test cases.

In steps 2 and 3, test cases may be generated incrementally.
Referring to ES 1 (fig. 1) , after checking for consistency and completeness , we select

"covering all conclusions" as the functional criterion, and generate the following four test
cases to exercise the four conclusions (grades of a, b, c, and f, or clauses 5, 6, 7, and 8) :

test case 1 : input : (c c c) conclusion: grade a
test case 2: input: (c c c c i) conclusion: grade b
test case 3: input : (c c c i) conclusion: grade c
test case 4: input : (c i) conclusion: grade f

A "c" represents a correct answer and an "i" represents an incorrect answer in the above
input cases . After testing the ES on the four cases and seeing correct results , we proceed
to step 3 and choose, say, "branch coverage" as the functional criterion. Since the four test
cases collectively have covered all the edges in the rule-flow diagram except edges (1 ,4) , (4,3) ,
and (4,4) , test case 5 is derived to supplement test cases 1-4:

test case 5: input (i i c) conclusion: grade f
After testing the ES on test case 5 and seeing correct results, 100% branch coverage is

achieved and the testing is completed.

Test Data Generation for Simple ESs

In this section, two models of ES rule representations are presented-as boolean
expressions and as a digital circuit . We illustrate that test data generation methods for
fault detection in either representation are directly applicable to the generation of test data
for simple ESs that are implemented exclusively with atomic conditions.

A rule-based ES comprises three basic components: an inference engine, a KB, and
a user interface. The KB contains a set of rules, each rule consists of a premise and a
conclusion. The action on the conclusion is carried out once the premise is determined to
be true. Examples of rules extracted from a hypothetical EENT (Eye-Ear-Nose-Throat)
diagnostic ES (diagnostic premises were obtained from [Berk77]) are the following:

RULE 1 :
IF otorhino..group AND NOT ear_discharge AND fever AND ear-pas sage-<:lear
THEN mastoidit i s

RULE 2 :
IF otorhino..group AND NOT ear_discharge AND NOT fever
AND NOT ear-passage_clear THEN ear_obstruct ion

RULE 3 :
IF opthalmologic..group AND eye_discharge AND NOT fever
AND eyel idJSwell ing THEN conj unct iviti s

- 3 3 5 -

RULE 4 :
IF opthalmologic-sroup AND NOT eye_discharge AND blurred_vision
THEN glaucoma

A rule-based ES is in canonical form if every implication operator is replaced by a
disjunction operator and every premise clause is negated. A close look at the rules of a
simple ES in canonical form reveals that they are equivalent to boolean expressions. For
example, the rules of the above ES can be represented by the following boolean expressions :

RULE 1 : -, (GroupJ &: -, Ea_1 &: F _1 &: Ea...2) V Ma

RULE 2 : -, (GroupJ &: -, Ea_1 &: -, L1 &: -, Ea...2) V Eo

RULE 3 : -, (Group..2 &: Ey_1 &: -, F_1 &: E...2) V Co

RULE 4 : -, (Group..2 &: -, Ey_1 &: Ey...3) V Gl

The EENT Expert System Rules as Boolean Expressions

The only boolean operator that does not appear in the above is the disjunction operator OR
which will be represented by the symbol '+' . Thus a rule such as

IF (Cond_1 OR Cond..2) AND NOT Cond...3
THEN Conclus ionj{

will be translated into a boolean expression of the form

-, «C_1 + C...2) &: -, C_3) V C-x

Since there is a clear isomorphism between a canonical from rule-based ES and a set of
boolean expressions, a test data generation algorithm from [TaSu87] for boolean expressions
can be used to generate test data for ESs.

Test Data Generation for Boolean Expressions

The test data generation algorithm is based on attribute grammars [AhSU86] . The
attribute grammar approach uses a predefined context-free grammar where each production
has a corresponding attribute rule associated with it. A general description of the test data
generation algorithm is as follows : a boolean expression, B, is assigned two attributes, T (B)
and F (B) such that

(i) T (B) U F (B) is the test set produced for B,
(ii) For each test X in T (B) , B (X) is true, and
(iii) For each test y in F (B) , B (y) is false.

To generate a test set using the above description, a bottom-up parsing of B based on the
production rules of G is made. Upon each reduction, an appropriate attribute rule is applied.
This continues until B is completely parsed. The result of this process is the test set T(B) U
F (B) . For a detailed description of the algorithm, refer to [TaSu87] .

- 3 3 6 -

An Example

Given RULE 1 as described above, the test data generator proceeds to find the test sets
as follows:

(i) calculate the test data for (F _1 & Ea_2) . This should yield the set { (t , t) , (t , j) , (j, tn ,

(ii) calculate the test data for (-, Ea_l) . The set for this is { (t) , (j) } ,
(iii) calculate the test data for (Group_l & -, Ea_l) . The result for this should be

{ (t, j) , (j, j) , (t , tn ,

(iv) finally, the calculation for the whole boolean
to RULE 1 (Group_l & -, Ea_l & F J &
{ (t, f, t , t) , (j, f, t, t) , (t , t , t , t) , (t, f, f, t) , (t , J, t , Jn .

expression corresponding
Ea-2) yields the set

The advantage of using the above algorithm is the guaranteed detection of boolean
operator errors using at most n + 1 test sets for n variables. It has been proved in
[TaSu87] that the minimum number of test set , IT min I , for n variables, satisfies the equation
2vn � IT min I � n + 1 . The same result holds for the class of completely fan-out free
digital circuits [Haye71] .

Test Data Generation from Digital Circuit Models

Digital circuit testing methodologies are very well established [Fuji85] . By modeling the
KB of a simple ES as a digital circuit , methods for testing digital circuits can be used to
test ESs rules.

The most widely used fault model for digital circuits is the stuck-at-faul t model
[Koha 78] . This model is the basis of many test data generation methods for boolean
expressions; it also inspired the mutation analysis method for software [Budd81] .

Here we give an example of test data generation for a simple ES using a digital circuit
testing method. Consider RULE 1 and its equivalent 2-level digital circuit containing three
AND gates (implementing f = ((A · lJ) . (C · D))) . The fault table method of test pattern
generation [Koha78] will be used to generate the tests. The minimal set of fault-detection
test patterns contains five entries: (OOl l ,Al) , (lOOI ,Cd , (1010,DI) , (lOl l ,AoBlCoDo) , and
(l l l l ,Bo) , the first tuple gives the test pattern 001 1 for the A-stuck-at-l fault , etc.

IV Conclusion

We have defined and analyzed several simple testing coverage criteria for ESs that are
implemented in a logic programming language like Prolog. These criteria can be used for
testing ordinary Prolog programs as well.

Although the structure of logic programs is very different from that of programs
written in conventional procedural languages, the criteria defined in this paper are much
similar to the testing criteria for conventional software. Unfortunately, the undecidable and
computationally difficult problems related to conventional program testing also carry over
to the testing of logic programs and ESs.

For example, given a program and a statement (branch, path) of it , it is not decidable
whether this statement (branch, path) is feasible. For logic programs, it is similarly
undecidable whether a clause is feasible (i.e. , whether there exists an input query that will

- 3 3 7 -

cause a given clause within a given program to be invoked during execution is undecidable) ,
or whether a given branch or path is feasible. Since many of the code-based testing criteria
are usually not satisfiable for large ESs, percentage goals should be set for monitoring testing
coverage, e.g. , 90% branch coverage or 95% clause coverage.

It is believed that neither functional testing nor structural testing will be very effective
alone; therefore, software testing procedures normally include both functional testing and
structure-based testing. For ESs software, the KB also needs to be checked for consistency,
completeness , and to detect defective rules-unreachable rules, redundant rules, subsumed
rules, etc. One main advantage of applying a formal criterion as a quality assurance step is
that a quantitative measurement of testing coverage can be made.

The testing and validation problem for ESs will become increasingly important as the
applications of ESs become more widespread. We will continue to pursue this work and hope
that more research efforts will be focused on this topic to facilitate the development of better
ESs technologies.

V References

[AhSU86] Aho, A.V. , Sethi, R. , and Ullman, J .D . , Compilers, Principles, Techniques,
and Tools, Addison Wesley, 2nd Edition, 1986.

[Berk77] Berkow, Robert , The Merck Manual of Diagnosis and Therapy, Merck Sharp
& Co. , Inc. , 13th Edition, 1977, pp. 1618-1649.

[BFKM85] Brownston, L . , Farrel, R. , Kant, E . , and Martin, N . , Production Expert
Systems in OPS5 An Introduction to Rule-Based Programming, Addison
Wesley, Reading, MA, 1985.

[Budd81] Budd, T.A. , "Mutation Analysis : Ideas, Examples, Problems, and Prospects,"
Computer Program Testing, Chandrasekaran, B. and Radicchi, S . , eds . , North
Holland, Amsterdam, pp. 129-148.

[ChSt88] Chang, C.L. and Stachowitz, R.A . , "Testing Expert Systems," Proceedings
of the Space Operations Automation and Robotics (SOAR 88) Workshop,
Dayton, Ohio, July, 1988, pp. 131-135.

[Chap82] Chapman, David, "A Program Testing Assistant ," Communications of the
ACM, Vol. 25, no. 9, Sept . 1982, pp. 625-634.

[Chus83] Chusho, Takeshi, "Coverage Measure for Path Testing Based on the Concept
of Essential Branches ," Journal of Information Processing, Vol. 6 , no. 4, 1983,
pp. 199-205.

[Clar76] Clarke, Lori, "A System to Generate Test Data and Symbolically Execute
Programs," IEEE Trans. on Software Engg. SE-2, no. 3, 1976, pp. 215-222.

[CIMe84] Clocksin, W.F. and Mellish, C .S . , Programming in Prolog, 2nd Ed. , Springer
Verlag, Berlin, 1984.

[CoHu87] Cochran, E.L. and Hutchins, B .L . , "Testing, Verifying, and Releasing an
Expert System: The Case History of Mentor," Proceedings of the 3rd
International Conference on Artificial Intelligence Applications, Kissimmee,
Florida, 1987, pp. 163-167.

[CrSt87] Cragun, B.J . and Steudel, H .J . , "A Decision-Table Based Processor for
Checking Completeness and Consistency in Rule-Based Expert Systems," in
International Journal of Man-Machine Studies, Vol. 26, 1987, pp. 633-648.

- 3 3 8 -

[CuRS87]

[DaLe82]

[DaWe83]

[FrWe88]

[Fuji85]

[Giar89]

[Haye71]

[Howd75]

[Howd76]

[Huan75]

[Ince87]

[Koha78]
[Kore90]

[LaKo83]

[MaRy90]

[Myer79]

[NPLP85]

[Ntaf84]

[OLea87]

Culbert, C . , Riley, G . , and Savely, R.T. , "Approaches to the Verification of
Rule-Based Expert Systems," First Annual Workshop on Space Operations
Automation and Robotics, NASA Conf Publication 2491 , Houston, TX,
August , 1987, pp. 191-196.
Davis, R. and Lenat, D.B. , Knowledge-Based Systems in Artificial Intelligence,
McGraw-Hill, NY, 1982.
Davis, M. and Weyuker, E.J. , "A Formal Notion of Program-Based Test Data
Adequacy," Information and Control, Vol. 56, no. 1-2, January, 1983, pp.
51-72.
Frankl, P.G. and Weyuker, E.J. , "An Applicable Family of Data Flow Testing
Criteria," IEEE Trans. on Software Engg. , Vol. 14, no. 10, October, 1988,
pp. 1483-1498.
Fujiwara, H. , Logical Testing and Design for Testability, MIT Press,
Cambridge, MA, 1985.
Giarratano, Joseph C . , CLIPS User's Guide (Version 4.3) , Artificial
Intelligence Section, Johnson Space Center, October 1989.
Hayes, John P. , "On Realizations of Boolean Functions Requiring a Minimal
or Near-Minimal Number of Tests," IEEE Trans. on Computers, Vol. C-20,
No. 12, December 1971 , pp. 1506-1513.
Howden, William E. , "Methodology of the Generation of Program Test Data,"
IEEE Trans. on Computers, Vol. C-24, No. 5, May 1975, pp. 554-559.
Howden, William E., "Reliability of the Path Analysis Strategy," IEEE Trans.
on Software Engg., Vol. SE-2, No. 3 , 1976, pp. 208-215.
Huang, J .C . , "An Approach to Program Testing," A CM Computing Surveys,
Vol. 7, No. 3 , Sept . 1975, pp. 1 13-128.
Ince, D .C . , "The Automatic Generation of Test Data," The Computer Journal
Vol. 30, no. 1 , 1987, pp. 63-69.
Kohavi, Z., Switching and Finite Automata Theory McGraw-Hill, N.Y. , 1978.
Korel, Bogdan, "Automated Software Test Data Generation," IEEE Trans.
on Software Engg. Vol. 16, no. 8, August 1990, pp. 870-879.
Laski, J.W. and Korel, B . , "A Data Flow Oriented Program Testing Strategy,"
IEEE Trans. on Software Engg. , Vol. SE-9, May 1983, pp. 347-354.
Marlowe, T.J. and Ryder, B .G. , "An Efficient Hybrid Algorithm for
Incremental Data Flow Analysis," Proc. of the 1990 ACM Conference on
Principles of Programming Languages, ACM Press, 1990, pp. 184-196.
Myers, Glenford J., The Art of Software Testing, John Wiley and Sons, N .Y. ,
1979.
Nguyen, T.A. , Perkins, W.A., Laffey, T.J . , and Pecora, D . , "Checking an
Expert Systems Knowledge Base for Consistency and Completeness," Proc. of
the 9th IJCAI Conf. , Los Angeles, CA, 1985, pp. 375-378.
Ntafos, Simeon C . , "On Required Element Testing," IEEE Trans. on Software
Engg. , Vol. SE-lO, no. 6, 1984, pp. 795-803.
O'Leary, D.E. , "Validation of Expert Systems-With Applications to Auditing
and Accounting Expert Systems," Decision Sciences Journal, Vol. 18 , no. 3,
1987, pp. 468-486.

- 3 3 9 -

[PLPN89] Perkins, W.A. , Laffey, T.J . , Pecora, D . , and Nguyen, T.A. , "Knowledge Base
Verification," Topics in Expert System Design, Elsevier Science Publishers,
North Holland, 1989. pp. 353-376.

[Puur87] Puuronen Seppo, "A Tabular Rule-Checking Method," Proc. of the 7th Int 'l
Workshop on Expert Systems and Their Applications, VoL I, Avignon, France,
May 13-15, 1987, EC2 Publishing, France, 1987, pp. 257-268.

[RaWe85] Rapps , S. and Weyuker, E.J . , "Selecting Software Test Data Using Data Flow
Information," IEEE Trans. on Software Engg. Vol . SE-l l , no. 4 , April 1985,
pp. 367-375.

[RGOM89] Radwan, A. E. , Goul, M. , O 'Leary, T .J . , and Moffitt, K.E. , "A Verification
Approach for Knowledge-Based Systems ," Transportation Research Journal,
Vol. 23A, no.4, 1989, pp. 287-300.

[RyPa88] Ryder, B .G. and Paull, M.C . , "Incremental Data Flow Analysis Algorithms,"
A CM Transactions on Programming Languages and Systems, Vol . 10, no. 1 ,
Jan. 1988, pp. 1-50.

[SCSC87] Stachowitz, R.A. , Chang, C.L . , Stock, J .B . , and Combs, J .B . , "Building
Validation Tools for Knowledge-Based Systems," First Annual Workshop on
Space Operations Automation and Robotics, NASA Conf Publication 2491 ,
Houston, TX, August , 1987, pp. 209-215.

[Smit88] Smith, Peter, Expert System Development in Prolog and Turbo-Prolog,
Halstead Press, N.Y. , 1988.

[SuSS82] Suwa, M. , Scott, A .C . , and Shortliffe, E.H. , "An Approach to Verifying
Completeness and Consistency in a Rule-Based Expert System," The AI
Magazine, Fall 1982, pp. 16-21 .

[TaSu87] Tai , K.C. and Su, H.K. , "Test Generation for Boolean Expressions ,"
Proceedings of the IEEE 1 1th Conf. on Computer Software and Applications,
Tokyo, Japan, Oct. 1987, pp. 278-284.

[ViAy90] Vignollet , L. and Ayel, M. , "Conceptual Model for Building Sets of Test
Samples for Knowledge Bases ." Unpublished report .

[WeOs80] Weyuker, E.J. and Ostrand, T.J . , "Theories of Program Testing and the
Application of Revealing Subdomains ," IEEE Trans. on Software Engg. Vol.
SE-6, May 1980, pp. 236-246.

[WhCo80] White, L.J . and Cohen, E.! . , "A Domain Strategy for Computer Program
Testing," IEEE Trans. on Software Engg. Vol. SE-6, May 1980, pp. 247-257.

[Zade84] Zadeck, F .K. , "Incremental Data Flow Analysis in a Structured Program
Editor," Proc. of the ACM SIGPLAN Symposium on Compiler Construction,
June 1984, SIGPLAN Notices, Vol. 19, no. 6, pp . 132-143.

- 3 4 0 -

MANAGING IN THE CLEAN ROOM ENVIRONMENT

Prepared for
9th Pacific Northwest Software Quality Conference

Portland , Oregon
October 7, 1 991

Michael Dyer
IBM Federal Sector Division
Bethesda, Md. 2081 7

- 3 4 1 -

THE CLEANROOM METHOD

Cleanroom is the name of a software development method [1] which was organized to

suppo rt the measurement and certification of software Mean-Time-To-Fai lure (MTTF) ,

prior to the release of software to its user. C lean room i s also the label for a col lection of

software engineeri ng methods which are the components of the Clean room software

development method. The term Clean room was selected to draw attention to a develop

ment process which strives to prevent the i ntroduction of errors during software devel

opment.

The Cleanroom software development process is organized as a set of component

methods, which can be applied individually but i n combination represent a radical departure

from current software development practice. The Clean room process extends beyond the

boundaries of what is normally i nterpreted as software development and deals with

software specification at one extreme and with functional software test ing at the other

extreme. Clean room i ntroduces new contro ls for software development, imposes new roles

and responsibi l ities on the various engi neeri ng discip l ines, e l iminates some seemingly

core methods from the development process and raises the level of train i ng and proficiency

required of the engi neering discipl i nes.

The total Cleanroom process should be used for software deve lopment to realize its fu l l

potential for enhancing product quality and process productivity. However, transition ing to

a total ly different development process is not always practical with in an o ngoing software

development environment and an i ncremental i ntroduction of the Cleanroom components

has proven to be a more effective strategy for techno logy transfer. Each of the half dozen

components addresses a specific aspect of the software development process, makes a

separate contribution to the development and has a unique set of considerations for process

i nsert ion. The components have been used i ndividual ly and in combi nation with demon

strable positive resu lts. This i ncremental realization of positive resu lts generally leads to

the gradual i ntroduction of the total process, which can now be accomplished without the

trauma of switching to a radical ly new development process.

Michael Dyer

IBM Federal Sector Division

Bethesda, Md. 2081 7

Managing the Clean room E nviron ment

Ju ly 31 , 1 99 1

- 3 4 2 -

The Cleanroom components are organized along the six technical l ines of software

speCification , software development , software correctness verificatio n , i ndependent soft

ware product testing , software rel iabi lity measurement and statistical process control .

Software Specification

With the Clean room process, there is an i mplied requirement for correctness, completeness

and stabi l ity in the software specifications, so that the correctness of the software design

can be verified as it is elaborated. Cleanroom forces software design against the early

specification of requirements and, in that process, forces stabi lity and completeness in

these speCifications. The result is stricter accountabil ity between specifiers and developers

and the early introduction of a control led approach to stabi l izing the product requirements.

In the Cleanroom method , more formal notation is introduced for accu racy and to resolve

many of the issues which wou ld be subsequently raised by the software designer,

attempting to verify the correctness of a design . The specification content is broadened to

identify the packaging of software requirements i nto incremental releases and to establ ish

the rel iabi l ity (MTTF) targets for the product . Cleanroom centralizes project focus on the

software specifications as the sing le source document on which to base all software deSign

and all subsequent validation of requirements implementation .

Software Development

Cleanroom identifies rigorous and formal design as a necessary e lement for generating

software whose correctness can be verified . A design method [2] based on structu red

programming theory is recommended for Cleanroom use. This method defi nes a l imited

set of pri mitives for capturing design logic, defi ning software structure and organizing the

software's data. The pri mitives are used in a systematic and stepwise refinement of the

software requi rements and in the construction of a software design whose correctness can

be assessed and confi rmed at each step.

Software Correctness Verification

In the Clean room method , correctness is defi ned as the equivalence between a require

ment and the design which supposedly implements the requireme nt. Designs are verified

Michae l Dyer

IBM Federal Sector Divisio n

Bethesda, Md. 2081 7

- 3 4 3 -

Managing the Cleanroom E nvironment

Ju ly 31 , 1 991

using the functional technique for correctness verification [3] , fi rst by the designer when

constructing a design and subsequently by i ndependent inspectors when reviewi ng the

design. Correctness proofs in the functional approach work off the design structu re rather

than the embedded application logic, which allow the same proofs to be used across al l

design levels. With some algebraic manipu lation , the question of correctness for a total

software product can be reduced to the su mmation of the correctness proofs for the

component parts.

Independent Software Product Testing

Software products are tested for two reasons - fi rst, to ensure that the software correctly

implements its design (structural testi ng) and, second , to ensure that the software satisfies

its specified requirements (functional testing) . Structural test ing is pri marily the responsi

bi l ity of the software developer, whi le functional test ing is generally performed by an

i ndependent organ ization.

In the Clean room method , on ly fu nctional testi ng is performed since the correctness

verification techniques , woven i nto the formal design method , satisfy all goals defi ned for

structural testing . Functional test ing is sti l l required in the Cleanroom method for validati ng

the implementation of the original requirements and a statistical approach [4] been defi ned

and proven effective . Functional testing is driven by probabi lity distributions which are

defi ned against the requirements and general ly track requirements usage i n the software's

operating envi ronment.

Software Reliabil ity Measurement

Cleanroom defi nes software rel iabi l ity in terms of software mean t ime to fai lure (MTTF)

which is a more meaningful measure for the user, which g ives a positive qual ity indicator

(longer MITF is better) and wh ich can be esti mated prior to software delivery . When tied

to a statistical testing approach , MITF predictions duri ng software development can

accurately reflect subsequent operational experience.

Statistical Process Control

Michael Dyer

IBM Federal Sector Division

Bethesda, Md. 208 1 7

Managing the Clean room Environment

Ju ly 31 , 1 99 1

- 3 4 4 -

Cleanroom allows conti nuous process i mprovement through the effective use of rel iabi l ity

measurements taken during i ncremental re leases of the software. Typical ly, i ncremental

releases of software are staggered across a development schedu le, so that MTTF readings

from early releases can have dramatic impact on any combination of the specificatio n ,

development and test phases. To gauge where corrective action i s required i n the process,

the variance between the recorded and the target MTTF's can help identify what and how

much correction is needed.

CLEANROOM I NTRODUCTION STRATEGY

Introducing a software development method i nto an existing development environ ment is

not easy and, i n the case of the Clean room method, is fu rther complicated because it also

encroaches on the software specifier's and software tester's areas of responsibi lity. A

clearly stated set of objectives must be defi ned which identify where and how much of the

Cleanroom method is to be used. The plann ing for a particu lar software development

entai ls Clean room train ing , identifying a tai lored version of Clean room to fit the particular

development envi ronment and organizing checkpoi nts for re-evaluating decisions on

techno logy selections. The train i ng ensures a consistent level of understanding to plan the

integration of the Clean room ideas i nto an existi ng development envi ron ment and to

implement a problem solution. The successful Clean room project i ntegrates the ideas i nto

its envi ronment and does not try to revo lutionize its development process. The successfu l

Cleanroom project also g ives itse lf ample opportunity to change its process , as it gains

experience , rather than stick with ideas which are fai l ing for any number of reasons with in

the particu lar project environment.

Training in the Cleanroom Method

Training in the Cleanroom method is critical so that the project team has the depth of

technical knowledge to apply the component techn iques with conviction and effectiveness.

The train ing is also necessary for the team's assessment and decision on wh ich

components of the Clean room method to use , because of the problem characteristics or

Michael Dyer

IBM Federal Sector Division

Bethesda, Md. 2081 7

Managing the Cleanroom Environment

Ju ly 31 , 1 99 1

- 3 4 5 -

development environment. This train ing is best conducted in two steps, with formal

instruction on the technical ideas fol lowed by hands-on experience in applyi ng those ideas

to the project's particu lar problem.

The Clean room components to be covered i n th is trai n ing should include formal methods

for software requirements specificatio n , structured prog ramming practice , the functional

correctness mode l , statistical test methods, software rel iabi l ity measurement and statistical

process control . For each component , i n-depth train ing on the theory and practice should

be given to ensure that the selected method is u nderstood and can be appl ied by the whole

project team. In this process, aspects of a particular technique might have to be modified

to fit the particu lar environment or to conform to organizational or contractual constraints

and standards. In general , the detai ls , on which aspects of a given method should become

practice (assuming no loss of the kerne l idea) , tends to be less sign ificant than the early

establ ishment and consistent application of a practice. This should e l iminate the endless

debate on personal preferences with in the team and should ensure a more effective use

of the method.

Some of the Cleanroom techniques might be viewed as beyond the scope of the project

defi nition or the abi lities of the project team . In that case , serious consideration should be

given to deferring the introduction of those techniques unti l a later project or phase of the

current development.

I n this train ing , formal instruction should be augmented with the attempted use of a

particular method in solving the problem at hand. Each project member should have the

opportunity to use the method, to decide its effectiveness to his assignment with in the

project and to make his suggestions on project practice. For the requirements specifiers

and software developers, the hands-on experience should cover the specification , design

and verification of some part ofthe top leve l design forthe problem solution . For the software

testers, the hands-on experience should include the attempted defi n ition of a top level

structure for the statistical data base to be used for the project's test sample generation.

The objective of the hands-on experience is to confi rm that the particular techniques can

be used for the application and by the project personnel . This experience is necessary for

organizing a tai lored version of the Clean room method to be used on a project.

Michae l Dyer

IBM Federal Sector Division

Bethesda, Md. 2081 7

- 3 4 6 -

Managing the Clean room Envi ronment

July 31 , 1 99 1

Selecting the Cleanroom Components for a Project

Clean room is not an al l-or-nothing method for software development but rather a col lection

of integrated components, which are i ntended to be used as a un it but can also be effectively

used, i ndividually or in combination . When starting a new project, a decision should be

made on where the project should enter the C leanroom process. For example , if measuring

and using software MTTF is a critical requirement , then implementing the complete

Clean room method should be seriously considered. Statistical testing should be viewed

on its own merits as a functio nal test candidate, which can and has been used without the

other Cleanroom components. Verification based inspections can be i ntroduced into most

software development processes, as long as software design is based on structured

programming. Current Clean room experience reflects positive resu lts with different

approaches to i ntroducing the Clean room method i nto a development organization and

then evolving into the acceptance and use of the total method.

Because of its breadth , the Cleanroom method lends itself to an incremental i ntroduction

i nto a software development envi ronment, where , i n any given instance , o n ly the techniques

appropriate to a particu lar problem and a particu lar project team are selected and used.

Force fitti ng a techn ique into a development situation is usually detrimental both to the

success of the project and to the acceptance of the Clean room method with in the

development environment.

Planning the Introduction of Clean room

Adequate planning for the introduction of the Clean room method is critical to ensure against

the potential for a project disaster, caused by the unwise or unsuccessfu l adoption of a

particu lar Clean room component. Project managers are encouraged to establish mi le

stones with in the project schedules at which the progress of the Cleanroom technology

transfer can be statused and assessed.

The number of mi lestones and thei r placement with in a schedu le wi l l vary from project to

project but, as a general rule , should appear frequently i n the early part of the project

schedu le. A general rule of thumb is to schedu le the in itial mi lestones for each decision i n

Michae l Dyer

IBM Federal Sector Division

Bethesda, Md. 2081 7

- 3 4 7 -

Managing the C leanroom E nvironment

Ju ly 31 , 1 99 1

the fi rst two-three months of a project , since these decisions shape the development

process. Subsequent mi lestones for the particu lars on the various decisions and for the

necessary support (train ing , tools, consulting) should be schedu led in the fi rst six months.

A specific goal should be defi ned for each mi lestone with a quantification of the technology

transfer to the particular project. Project management should judge the prog ress being

made in transferring the technology and decide whether changes are needed (eg . more

train ing on specific techn ical topics) or whether the techno logy transfer should be stopped.

In this latter case , the plan for reverti ng back to previously used methods should have

been worked out, so that the recovery can proceed as effortlessly as possible. The planned

schedule should contai n sufficient flexibi lity to ensure the t ime and the resou rces to

implement the recovery.

Generally, technology transfer would address developing the requirements specification

with a formal method , i ntegrating the functional correctness model i nto the baseli ne formal

design method , el imi nating development testi ng from the software process and imple

menting verification based i nspections. From a test and rel iabi l ity perspective , the transfer

would address software testing with statistical ly representative user i nputs and the

esti mation of software MTIF on a conti nuous basis during development. For each item,

appropriate mi lestones should be defi ned to identify what was to have occurred , how

success wou ld be measured , what forward plan was to be activated , what tolerances on

successfu l completion were acceptable and what recovery plan would be i mplemented i n

the unsuccessfu l case.

Mi lestones for Formal Specification Methods

For formal requi rements specification , an in itial mi lestone might be the completion of a top

level software product specification , prepared by the lead engineer(s) . A subsequent

mi lestone might address the e laboration of the next leve l (s) of specification for the

components of the software architecture . The i ntent of these additional mi lestones wou ld

be to involve all project software specifiers i n the use of the formal specification method ,

to ensure that the specifier team can use the formal method and that the software

developers and testers can understand thei r workproducts.

Michael Dyer

IBM Federal Sector Division

Bethesda, Md. 2081 7

- 3 4 8 -

Managing the Cleanroom Envi ronment

Ju ly 31 , 1 99 1

The mi lestones would provide project management with the opportunity to assess whether

the formal specification method could be used for the particu lar problem and by the

particu lar staff. If the defi ned workproducts were not completed or un intel l ig ible to the

developers, testers and customers , then the effectiveness of the technology transfer would

be suspect and some change in requirements specification is needed. Before revert ing

back to natural language specifications, the adequacy of the in itial train ing , the avai labi l ity

of expert consultation and support tools and the levels of actual accomplish ment should

be reviewed. Since the specification is key to the project start-up, problems with applyi ng

the formal methods for specifications must be resolved , early in the schedu le, and can not

be allowed to l inger into development. Either corrective steps are taken to get formal

specifications on the project or the project reverts to established (ie . natural language)

specification practice .

Mi lestones for the Functional Correctness Model

For integrating the functional correctness mode l with the exist ing design practice , an in itial

mi lestone might be the completion of a verified top leve l software design , which wou ld g ive

the fi rst leve l decomposition of the specifications for the software architectu re . The

description might be a few pages of design language description , prepared by the project's

lead designer(s). A subsequent checkpoint mig ht be the completion of verified designs for

the next one or two levels of decomposition . The objective for this mi lestone wou ld be to

g ive al l the software designers on the project and opportu nity to apply the fu nctional model

in construct ing a verified design .

The mi lestones would provide project management with the opportunity to assess whether

the design and correctness ideas could be appl ied by the lead and other software designers ,

in developing a solution to the particu lar problem. I f t he designs can not be successfu lly

completed and verified to eve ryone's satisfaction by the planned mi lestones, then the

effectiveness of the in itial train ing in the fu nctional correctness model , the completeness

of the requirements specification and the commitment of the staff should be re-evaluated

before proceeding. Any early problems with applyi ng the correctness ideas need to be

resolved with corrective steps (eg . additional consult ing support , the use of analyzers to

Michael Dyer

IBM Federal Sector Division

Bethesda, Md. 2081 7

- 3 4 9 -

Managing the Cleanroom Environment

July 31 , 1 99 1

guide verification , etc. } . The alternative wou ld be to stay with the established design

practice , which probably means planning for more formal i nspection and development

testing at the completion of design .

Mi lestones for El iminating Developer Testi ng

For el iminating development testing , an in itial mi lestone might be the completion of the

defi nition and planning of the l ibrary and configuration management procedures to support

the de livery of code prior to its execution . A pre l iminary plan would be acceptable

documentation for this mi lestone which wou ld be prepared jointly by the lead software

developer(s} and tester(s}. A subsequent m i lestone might be the defi nition of inspection

plans and mi lestones to ensure quality code delivery and of development procedu res and

tools to ensure that the design and code can created in a non-execution envi ronment.

The mi lestones wou ld provide project management with the opportunity to assess whether

the project is serious about developing software without development testi ng and has put

in place the tools and discipl ines to facil itate this development approach. If satisfactory

definition and planning is not completed by these mi lestones, then the commitment of the

project to this objective should be reviewed. Testing by developers is a tradition which wi l l

not go away by decree but needs effective planning for i t to happen (eg . separating the

design and development from the target computer, l imiti ng target computer access to

testers, al locati ng a percentage (25-35%) of developer ti me to inspections, defi n ing

handover tests for acceptance of software into test , etc.) . Un less this early planning and

set-up is accomplished, the development will start on the wrong foot and the project

commitment to this objective wi l l probably evaporate. Either the appropriate development

envi ronment is organized to support development without developer testing , or the project

should revert to its established development practice , maki ng the necessary adjustments

to accommodate developer testing.

Mi lestones for Verification Based Inspections

For introducing verification based inspections, an in itial mi lestone might be the defi nit ion

and planning of the inspection schedu les, analysis tool and inspection format. A pre l iminary

plan wou ld be acceptable for this mi lestone, which was prepared by the lead software

Michael Dyer

IBM Federal Sector Division

Bethesda, Md. 2081 7

- 3 5 0 -

Managing the Cleanroom Environment

Ju ly 3 1 , 1 99 1

developer(s} . Subsequent mi lestones might be the completion of the requirements

specification for the analysis too l , of the veri fied top level design for th is tool and of the

prel iminary plan for testing the tool . This would be another opportunity to involve a

cross-section of the project in applyi ng the selected Cleanroom methods.

The mi lestones wou ld provide project management with the opportunity to assess whether

adequate preparation is being made for introduci ng the verification based inspection into

the development process (eg . ensuring the al location of sufficient person nel time, having

the analysis tool avai lable when needed, worki ng out the formats ofthe i nspection meetings,

etc.) . If there is project difficu lty in completi ng these mi lestones, then the interest and

commitment to introducing this new method should be re-examined and resolved (eg .

subcontracti ng the analysis tool development) . Without the early defi nit ion and planning,

there wi l l not be a smooth or problem free i ntroduction of the verification based inspection .

Either the necessary t ime is taken early in the project or the project should stay with its

established formal i nspection practice .

Mi lestones for Statistical Testing

For introducing statistical test methods, an in itial mi lestone might be the defi nition of

database organization , for generating the test samples. A pre l iminary description would

be acceptable that defi nes a strategy for g rouping the software inputs (eg . t ime, syntax ,

safety , etc.) and for organizing a selection h ierarchy (eg . t ime periods, severity leve ls, etc.) .

The description wou ld be prepared by the lead test engi neer(s} . Subsequent mi lestones

might be the defi nition of the top few levels of probabi l ity distributions, the se lection (or

defin it ion) of the generator support software and the encoding of an in itial set of database

entries. These latter mi lestones would involve a larger segment of the software testers

and ensure acceptance of the statistical approach by the software testers.

The mi lestones wou ld provide project management with the opportunity to assess whether

a statistical approach to test sampling can be defi ned by the test organization and whether

the mechanics of sample generation have been worked out. If there is project difficu lty in

meeting these mi lestones, then the applicabi lity of statistical test to the particu lar problem

needs to be reexamined and modified forms of statistical testing introduced (eg . multi ple

Michael Dyer

IBM Federal Sector Division

Bethesda, Md. 2081 7

- 3 5 1 -

Managing the Clean room Environment

Ju ly 31 , 1 99 1

user envi ronments defi ned , exist ing traffic samples used i n l ieu of database defi nit ion ,

etc. } . Either the effort i s spent o n defi n ing a statistical approach o r the project reverts to

its established practice for requirements validation .

Mi lestones for Software MTIF Prediction

For integrating software MTIF prediction , an i n it ial mi lestone might be the se lection of

appropriate statistical models and the defi nit ion of a predict ion procedu re . A pre l im inary

plan prepared by the lead software tester(s} would be acceptable but would have to be

integrated with a statistical test ing plan. Subsequent mi lestones might i nclude the

instal lation and checkout of mode ls, the defi nit ion of model validation procedures and the

defi nit ion of MTIF prediction and assessment reports.

The mi lestones wou ld provide project management with the opportunity to assess whether

the project was set-up for MTIF calcu lations (ie . test i nterface , tools and procedures) and

had defi ned a project role for software MTIF (eg . basic quality measure , contro l in a

feedback process , etc.) . If there is difficu lty i n complet ing the mi lestones , there should be

a re-evaluation of the project's abi lity to do statistical predict ion (ie . statistics background

of staff, avai labi l ity of mode ls, etc.) , of bott lenecks from the test ing side (ie. statistical test

plans , tim ing un its , i nterfacing , etc.) and of the project's i nterest and commitment to doing

someth ing with the MTIF data. The fallback position would be use more tradit ional quality

measures and not bother with statistical model ing .

CLEANROOM PROJ ECT MANAG E MENT

Project management with the Clean room method is not measu rably different for project

management when more conventional methods are used. One difference would be the

tracking of the technology transfer mi lestones which provide project management with the

opportunity to assess the introduction of the Clean room component techn iques, to judge

thei r acceptance by project staff and to measure thei r contribut ion to project productivity

and quality goals.

Michael Dyer

IBM Federal Sector Division

Bethesda, Md. 2081 7

- 3 5 2 -

Manag ing the Cleanroom Environme nt

August 1 , 1 99 1

A second difference is the public visibi l ity given to software qual ity by the early p lacement

of software under formal configuration control and the conti nuous estimation of the software

MTTF during development. Typical ly, software goes through various leve ls of review and

inspection and various steps of developer testi ng , before it goes u nder configuration

management. The theory is that enough effort (people and methods) has been given to

removing errors , that the software is reasonably stable (small percent of remai n ing errors)

and that the software can be given public (outside the project and, possibly outside the

company) scruti ny without embarrassment. I n the Clean room process, software is placed

under configu ration management prior to its fi rst executio n , which requires higher

confidence and commitment from management in the Clean room's zero defect design

strategy.

A th ird difference is the leadership and conviction that must be shown by project

management i n challeng ing accepted development practices and/or myths (eg . un it testing

by developers , the ineffectiveness of randomized testing , the absurdity of software MTTF,

the advanced mathematical backgrou nd requ i red for software verification and the futi lity

of formal methods with changing requirements). Clean room offers cou nter i ntuitive ideas

and methods which can and have been demonstrated to be practical and usable with in

the typical software development environment. Project management must ensure that staff

skepticism in adopting these methods is overcome by providi ng the train i ng , tools and

consultation support to faci l itate thei r effective use.

A fourth difference is to manage process i mprovement i nto the development effort. This

requires observation and measurement of the process throug h the MTTF statistic,

recognizing problems flagged by a constant or decreasi ng MTTF statistic and ensuri ng

process correction via an increasing MTTF statistic. The i ncremental development strategy

affords the measurement opportunities from which process corrections (eg . i ncreased

specification formality, broader participation in verification based inspections, etc.) can be

defi ned for subsequent i ncrement development and tracked for improvement effectiveness.

The Cleanroom method provides a un ique capabi lity to project management for placing

thei r software development under statistical quality control .

CLEAN ROOM I M PACT ON THE SOFTWARE PROCESS

Michael Dyer

IBM Federal Sector Division

Bethesda, Md. 2081 7

- 3 5 3 -

Managing the Cleanroom Environment

Ju ly 31 , 1 99 1

------------ --- -- -----

The i ntroduction of the Clean room method would impact most steps i n the software

development life cycle , as shown i n figure 1 which summarizes the role of the life cycle

steps and the changes resulting from Clean room.

SUMMARY O F CLEANROOM IMPACTS

ON A DEVELOPMENT LIFE CYCLE MODEL

REQUIREMENTS SPECIFICATION
Function and Performance

but with
Usage and Build Statistics

SOFTWARE DESIGN/IMPLEMENTATION
Incremental Software Development

but with
Correctness Verification not Unit Test

INDEPENDENT SOFTWARE TEST
Integration & Test of Released I ncrements

but with
Representative Statistical Usage Samples

SOFTWARE ACCEPTANCE
Demonstrated Function and Performance

but with
Certified Software MTTF

Figure 1

Impacts on Software Specification

Software specifications defi ne functional requirements and describe performance budgets

that constrain execution time, size , etc. and environmental constraints such as i nterfaces,

modu larity, documentation , packaging and standards consideratio ns.

With Clean room, the software specification is written with more formal notation to support

correctness verification . Several acceptable methods are available such as box structuring

techniques, formal specification languages (Z, VDM, etc.) , and problem specific grammars.

These formal methods force a closer analysis of the requirements and tend to min imize

ambiguity , i nconsistency and i ncompleteness in the resultant software specification .

Michael Dyer

IBM Federal Sector Division

Bethesda, Md. 2081 7

- 3 5 4 -

Managing the Cleanroom Envi ro nment

Ju ly 31 , 1 99 1

In addit ion to more formal specifications, Clean room forces the consideration of data on

software usage and software construction to drive statistical test ing. This i ncludes the

identification of software i nputs and thei r expected usage probabi lities to structure the test

data bases. Any i ncremental release strategy must be elaborated to factor the planned

avai labi l ity of the software function i nto the test plann ing .

Impacts o n Software Design

The major design i mpact is the i ntroduction of functional correctness verification i nto the

design process. The Clean room design ethic is one of requirements specificatio n , fol lowed

by design of a solution to the specification , fol lowed by verification of the equivalence

between the design and requirements. Verification is i ntegral to the design construction

and imposes a control on the designer which gates the refinement of the software speci

fication .

A second impact i n the design step is the i ntroduction of verification based i nspections to

provide an i ndependent confi rmation of the design correctness. The verification based

inspection bui lds on the formal i nspection practice [5] but re-orients the i nspect ion to

correctness confi rmation rather than error detection. The reo rientation is achieved through

the use of design language analyzers which can determine the structure of the design and

formu late the sequence and content of the questions to be addressed in i nspections.

Impacts on Software Implementation

The impact to software implementation from the Cleanroom method wi l l depend on the

approach to software design . If design and verification are performed to fu ll detail in the

design step, then implementation becomes a transliteration of design notation into pro

g ramming language notat ion.

An equally acceptable approach is to split the design refinement between the use of design

notation and the use of the implementation programming language. The i mplementation

Michael Dyer

IBM Federal Sector Division

Bethesda, Md. 2081 7

Managing the Cleanroom E nvironment

July 31 , 1 99 1

- 3 5 5 -

impact is that the software coding wou ld now be performed stepwise, with each step verified

for correctness and with verification based code i nspections performed to confi rm cor

rectness.

Impacts on Software Developer Testing

The impact to this step is that it is no longer performed in the Cleanroom method. Close

adherence to functional correctness verification ensures that al l of the error detection

situations addressed by developer testing are addressed in verification . With the Clean

room method, the on ly reasons for software engineers to execute thei r software wou ld be

to check the feasibi l ity or performance of newly defi ned algorithms, to exercise support

software faci lities and to confi rm operating system services.

Impacts on Independent Testing

The Cleanroom method does not preclude testing because of software correctness veri

fication , but rather rel ies on independent testi ng to validate that the software requirements

were correct ly implemented . Clean room impacts traditional testing by introducing statistical

techniques. This impact on the tester has proven to be one of the harder obstacles to

overcome in obtain ing acceptance of the Clean room method. At the same time, statistical

test techniques have the g reatest potential for significant savings in the si ngle most

expensive part of software development.

CLEANROOM I MPACT ON THE SOFTWARE PRODUCT

Work on the Clean room method was origi nally started to improve the quality of delivered

software and in itial experience indicates that this purpose has been met. The qual ity

improvement can be observed in quantitative terms from measures of software defects

and in qualitative terms from improved software specifications , simpler software designs ,

faster error iso lation and repai r and fewer reported post-de livery problems.

Impact on Software Defect Rates

Michael Dyer

IBM Federal Sector Division

Bethesda, Md. 2081 7

Managing the Cleanroom Environment

July 31 , 1 99 1

- 3 5 6 -

To get some feel for the levels of quality improvement being realized with the use of

Clean room, two snapshots of reported data are provided. The second version of the

COBOL Structuring Faci l ity [6] was developed in five software increments. Error rates

were measu red from start (fi rst software execution) through the completion of i ndependent

statistical testing and ranged from 1 .4 to 5.7 errors per thousand l ines of source code

(ksloc), with an average of 3.4 errors/ksloc.

A simi lar picture of quality improvement was seen in the application of the Clean room

method in the Software Engineering Laboratory (SEL) at NASA Goddard [7] . Error rates

were measu red from the start (again fi rst software execution) through the completion of

independent statistical testing and averaged 3.3 errors per ksloc. This compared very

favorably to the 6 errors per ksloc which was the average experience of simi lar software

developments in the SEL environment. I n both the COBOL and SE L cases , the reported

post-delivery errors were extremely small and measured in fractions of an error per ksloc.

Impact on Software Design Simpl icity

One resu lt experienced in al l uses of the Clean room method was a demonstrated simplicity

in the designs which were produced. Desig ners tended to be conservative in thei r designs.

The result was a software design which satisfied the requirements (no less but no more)

and used on ly known and easy to verify design ideas (noth ing complicated nor exotic) .

This was seen repeatedly in the verification based inspections where 90% or more of a

design cou ld be confi rmed in a straightforward manner and where design pieces, whose

correctness cou ld not be proved simply , were general ly returned for further simplification .

The same simplicity was evident during the independent testing of the software where it

cou ld have been expected that the developer would need to execute the software to

recreate error conditions and diagnose the source of fai lures. This turned out not to be the

case [6,7] and developers were able to diagnose problems di rectly from thei r l ist ings of

software statements. In projects [7] , where the development organ ization had h istorical

data on the time spent in finding and fix ing errors, the reduction in effort was l ike an order

Michael Dyer

IBM Federal Sector Division

Bethesda, Md. 2081 7

Managing the C lean room Envi ronment

Ju ly 3 1 , 1 99 1

- 3 5 7 -

of magnitude, with repai r cycles going from months and weeks to hours and days. This

reduction is particularly remarkable since the software was always under formal configu

ration management, which imposed procedures and regu lations on the fix and repair cycle.

Impact on Software Development Productivity

Software quality was the underlying objective of the work in developi ng the Clean room

method. The added care in developing correct designs and the verification emphasis on

inspections were new and different kinds o f work, which were originally thought to add to

the software design. Simi larly, the added analysis in defi n ing probabil ity distributions and

bui ld ing statistical data bases for test sampl ing was o riginally thought to add some delta

to the test effort.

A surprising resu lt of the Cleanroom work is that software productivity did not go down

and, in fact , i ncreased in several cases. From the development side , design simplicity and

the complete el imination of developer tester resu lted in reduced effort that more than

compensated for the work to integrate correctness into the software designs. In the case

of the COBOL S/F and NASA SEL projects [6,7] the reported productivities were in the

range of 750 l ines of source code per labor month , which is three to four t imes higher than

the average productivities, reported in the software l iterature .

Michael Dyer

IBM Federal Sector Division

Bethesda, Md. 2081 7

Managing the Clean room Environment

July 31 , 1 99 1

- 3 5 8 -

REFERENCES

(1) M .Dyer

The Clean room Approach to Qual ity Software Development

John Wiley & Sons, Inc January 1 992

(2) R.C.Linger, H .D .Mi l is and B. I .Witt

Structured Programming : Theory and Practice

Addison-Wesley 1 979

(3) H . D. Mi l is

The New Math of Computer Programming

Comm ACM Vol . 1 8 No. 1 1 975

(4) M.Dyer

Statistical Testing : Theory and Practice

Tutorial 7th International Software Test ing Conference 1 990

(5) M.E . Fagan

Design and Code Inspections to Reduce Errors i n Program Development

IBM Systems Journal Vol. 1 5 No.3 1 976

(6) R.C.Linger and H . D.Mi l is

Case Study in Cleanroom Software Development

COMPSAC '88 Proceedings 1 988

(7) S.Green , et al

The Cleanroom Case Study in the SEL

NASA Goddard SEL Series SEL-90-002 1 990

Michael Dyer Manag ing the Cleanroom E nvironment

IBM Federal Sector Division

Bethesda, Md. 2081 7

- 3 5 9 -

Ju ly 31 , 1 991

MANAGING IN THE CLEAN ROOM ENVIRONMENT

Prepared for

9th Pacific Northwest Software Quality Conference

Portland, Oregon

October 7,1 991

Michael Dyer

IBM Federal Sector Division

Bethesd. Md. 208 t 7

WHAT IS THE CLEANROOM METHOD

Technical and Organizational Approach to

Developing Software with Certified Reliability

Objectives

Focus on User Driven Definition for Reliability

Release Software with Known Reliability

Put Software Developed under Statistical Control

DISCUSSION OUTLINE
Overview of the Cleanroom Method

Strategy for Introducing Cleanroom

Clean room Project Management

Impacts on Software Process and Products

Lessons Learned

COMPONENTS OF THE CLEAN ROOM METHOD

3 6 0 -

Software Specifications

• Formal Notation for Function and Performance

• Usage Distributions and Construction Plans

Software Development

• Rigorous and Formal Design Method

Software Correctness Verification

• Correctness Woven into Design Process

• Verification Based Inspection Process

COMPONENTS OF THE CLEAN ROOM METHOD

Independent Software Product Testing

• Statistically Based Testing

• Test Samples of Representative User Inputs

Software Reliability Measurement

• Defined as Software Mean-Time-To-Failure (MTTF)

Statistical Process Control

• Continuous Process Improvement

• Driven by Software MTTF Projection

PROFILE OF EXPERIENCE WITH CLEAN ROOM METHOD
(Percent Of Cleanroom Projects USing Component Technique)

Formal Basehne Correc1ness No Unit StatistICal MITF Average

SpecdcatlOn Destgn Verification Test Testing PredlClIon Total Usage

Completed IBM 33 1 00 66 PrOlects 1 00 66 50 69

Completed E){lernat

PIOff!C1S 0 1 00 0 1 00 1 00 0 50

Current IBM

Projects 80 1 00 1 00 1 00 40 40 76

Cunenl E�emal

Protects 1 00 1 00 50 1 00 50 0 66

3 6 1

CLEAN ROOM IMPACTS
ON A DEVELOPMENT LIFE CYCLE

REQUIREMENTS SPECIFICATION
Function and Performance

bul wilh
Usage and Build Statistics

SOFTWARE DESIGNIIMPLEMENTATION
Incremental Software Development

bul wllh
Correctness Verification not Unit Test

INDEPENDENT SOFTWARE TEST
Integration & Test of Released Increments

bul wllh
Representative Statistical Usage Samples

SOFTWARE ACCEPTANCE
Demonstrated Function and Performance

bul wllh
Certified Software MTTF

STRATEGY FOR INTRODUCING CLEAN ROOM

Training in the Cleanroom Method

• Formal SpeCifications and Correctness Verification

• Statistical Testing and Reliability Modeling

Tailoring Cleanroom to Development Environment

• Expanding rather than Replacing Existing Process

• Considering Needs of Project and Staff

Planning the Inroduction of Cleanroom

• Checkpoints for Assessing Technology Transfer

• Introduction of Support Tools

CLEAN ROOM WORKSHOPS
Mixture of Theory and Practice

Selection of Three Forty Hour Courses

• Formal Specifications · Box Structure Method

• Formal Design with Rigorous Verification

• Software Certification · Reliability and Test Methods

Prerequisites

• Attendance by Project Teams

• Set Theory, Logic and StatistiCS Background

ASSESSING TECHNOLOGY TRANSFER
Definition of Project Milestones

• Minimum 01 Two Per Technology

• Scheduled in First 3·6 Months 01 Project

PUrpose of Milestones
• Ouantilied Assessment 01 Technology Acceptance

• Process Changes to Improve Technology Transler

• Technology Work·Arounds to Ensure ProjeCt Completion

candidate Assessments
• Formal SpecifICation Methods

• Functional Correctness Model lor Software Verification

• Elimination 01 Developer Testing Steps

• Verilication Based Inspections

• Statistical Based Testing

• Software MTTF Prediction

3 6 2

SOFTWARE SPECIFICATION WORKSHOP
TYPICAL CURRICULUM

Problem Analysis

• F unction Decomposition

• Function Allocation

• Requirements Traceability

Box Structure Analysis

• Design PrinCiples

• Black, Clear and State Boxes

Specification Preparation

• Inspections and Reviews

• Incremental Development Plans

• Usage Distributions

SUGGESTED MILESTONES FOR
FUNCTIONAL CORRECTNESS TRANSFER

Initial Milestone

• Completion of Verified Top Level Design Which

Covers First Level of Requirements Decomposition

• Prepared by Project's Lead Designer(s)

Subsequent Milestones

• Completion of Verified Designs for Next

One to Two Levels of Requirements Decomposition

• Prepared by All Project Designers

CLEANROOM PROJECT MANAGEMENT

No Change In Schedule and Resource Management

Cleanroom Unique Considerations

• Active Assessment of Technology Transfer

• Public Visibility with Early Software CM

• Leadership in Overcoming Skepticism on Technical Ideas

(Correctness. No Debugging. Statistical Test. MTTF)

• Commitment to Statistical Process Control

CLEAN ROOM PRODUCT IMPACTS
Product Quality Improvement

• More Prevention with Correctness Model

Simpler Designs with Fewer and More Easily Found Errors

• Earlier Detection - 90. % Errors Removed Prior to Test

• Order of Magnitude Reduction in Errors Found in Test and Field

(3lksloc during Test and < 1 /ksloc post delivery)

Development Productivity Improvement

• Added Design Care Offset by Reduced Testing

(2:1 Productivity Improvement Realized)

• Near Zero life Cycle Maintenance

3 6 3

CLEAN ROOM PROCESS IMPACTS
Improved Specifications with Formal Methods

Correctness Model Integrated into Design Practice

• Simplified Implementation fro", Design Attention

Developer Testing Replaced by Verification

Testing with Representative Usage Samples

Software MTTF for Tracking Product Quality

LESSONS LEARNED
About the Cleanroom Method

• Practical across Range of Applications

• Brings Formality to Software Development

Mathematics and Functional Correctness to Design

Statistics and Software MTTF to Test

• Puts Quality Focus on Customer Interests

About the Application of Clean room

• Tailorable to Existing Development Environments

• Usable by Software Practioners with Training

Hesitant Acceptance by Developers

Reluctant Acceptance by Testers

• Provides Both Quality and Productivty Improvement

- -- -- -------

