

[PLPNB8Y)

[Puur87]

[RaWe8s]

[RGOMS89)

[RyPa8s]

[SCSC87]

[Smit8s]

[SuSS82]

[TaSu87]

[ViAy90]

[WeOs80]

[WhCo80]

[Zade84]

Perkins, W.A., Lafey, T.J., Pecora, D., and Nguyen, T.A., "Knowledge Base
Verifcation," Topics in Ezpert System Design, Elsevier Science Publishers,
North Holland, 1989. pp. 353-376.

Puuronen Seppo, "A Tabular Rule-Checking Method," Proc. of the 7th Int'l
Workshop on Expert Systems and Their Applications, VoL I, Avignon, France,
May 13-15, 1987, EC2 Publishing, France, 1987, pp. 257-268.

Rapps, S. and Weyuker, E.J., "Selecting SoFware Test Data Using Data Flow
Information," IEEE Trans. on Software Engg. Vol. SE-11, no. 4, April 1985,
pp. 367-375.

Radwan, A. E., Goul, M., O'Leary, T.J., and MoFtt, K.E., "A Verifcation
Approach for Knowledge-Based Systems," Transportation Research Journal,
Vol. 23A, no.4, 1989, pp. 287-300.

Ryder, B.G. and Paull, M.C., "Incremental Data Flow Analysis Algorithms,"
ACM Transactions on Programming Languages and Systems, Vol. 10, no.l,
Jan. 1988, pp. 1-50.

Stachowitz, R.A., Chang, C.L., Stock, J.B., and Combs, J.B., "Building
Validation Tools for Knowledge-Based Systems," First Annual Workshop on
Space Operations Automation and Robotics, NASA Conf Publication 2491,
Houston, TX, August, 1987, pp. 209-215.

Smith, Peter, Ezpert System Development in Prolog and Turbo-Prolog,
Halstead Press, N.Y., 1988.

Suwa, M., Scott, A.C., and Shortlife, E.H., "An Approach to Verifying
Completeness and Consistency in a Rule-Based Expert System," The Al
Magazine, Fall 1982, pp. 16-21.

Tai, K.C. and Su, H.K. "Test Generation for Boolean Expressions,"
Proceedings of the IEEE 11th Conf. on Computer Software and Applications,
Tokyo, Japan, Oct. 1987, pp. 278-284.

Vignollet, L. and Ayel, M., "Conceptual Model for Building Sets of Test
Samples for Knowledge Bases." Unpublished report.

Weyuker, E.J. and Ostrand, T.J., "Theories of Program Testing and the
Application of Revealing Subdomains," IEEE Trans. on Software Engg. \Vol.
SE-6, May 1980, pp. 236-246.

White, L.J. and Cohen, E.!., "A Domain Strategy for Computer Program
Testing," IEEFE Trans. on Software Engg. Vol. SE-6, May 1980, pp. 247-257.
Zadeck, F.K., "Incremental Data Flow Analysis in a Structured Program
Editor,” Proc. of the ACM SIGPLAN Symposium on Compiler Construction,
June 1984, SIGPLAN Notices, Vol. 19, no. 6, pp. 132-143.

- 340 -

MANAGING IN THE CLEANROOM ENVIRONMENT

Prepared for
9th Pacific Northwest Software Quality Conference
Portland, Oregon
October 7, 1991

Michael Dyer
IBM Federal Sector Division
Bethesda, Md. 20817

- 341 -

THE CLEANROOM METHOD

Cleanroom is the name of a software development method [1] which was organized to
support the measurement and certification of software Mean-Time-To-Failure (MTTF),
prior to the release of software to its user. Cleanroom is also the label for a collection of
software engineering methods which are the components of the Cleanroom software
development method. The term Cleanroom was selected to draw attention to a develop-
ment process which strives to prevent the introduction of errors during software devel-
opment.

The Cleanroom software development process is organized as a set of component
methods, which can be applied individually but in combination represent a radical departure
from current software development practice. The Cleanroom process extends beyond the
boundaries of what is normally interpreted as software development and deals with
software specification at one extreme and with functional software testing at the other
extreme. Cleanroomintroduces new controls for software development, imposes new roles
and responsibilities on the various engineering disciplines, eliminates some seemingly
core methods from the development process and raises the level of training and proficiency
required of the engineering disciplines.

The total Cleanroom process should be used for software development to realize its full
potential for enhancing product quality and process productivity. However, transitioning to
a totally different development process is not always practical within an ongoing software
development environment and an incremental introduction of the Cleanroom components
has proven to be a more effective strategy for technology transfer. Each of the half dozen
components addresses a specific aspect of the software development process, makes a
separate contributionto the development and has a unique set of considerations for process
insertion. The components have been used individually and in combination with demon-
strable positive results. This incremental realization of positive results generally leads to
the gradual introduction of the total process, which can now be accomplished without the
trauma of switching to a radically new development process.

Michael Dyer Managing the Cleanroom Environment
IBM Federal Sector Division
Bethesda, Md. 20817 July 31, 1991

- 342 -

The Cleanroom components are organized along the six technical lines of software
specification, software development, software correctness verification, independent soft-
ware product testing, software reliability measurement and statistical process control.

Software Specification

Withthe Cleanroom process, thereisanimplied requirementfor correctness, completeness
and stability in the software specifications, so that the correctness of the software design
can be verified as it is elaborated. Cleanroom forces software design against the early
specification of requirements and, in that process, forces stability and completeness in
these specifications. The result is stricter accountability between specifiersanddevelopers
and the early introduction of a controlled approach to stabilizing the product requirements.
In the Cleanroom method, more formal notation is introduced for accuracy and to resolve
many of the issues which would be subsequently raised by the software designer,
attempting to verify the correctness of a design. The specification content is broadened to
identify the packaging of software requirements into incremental releases and to establish
the reliability (MTTF) targets for the product. Cleanroom centralizes project focus on the
software specifications as the single source document on which to base all software design
and all subsequent validation of requirements implementation.

Software Development

Cleanroom identifies rigorous and formal design as a necessary element for generating
software whose correctness can be verified. A design method [2] based on structured
programming theory is recommended for Cleanroom use. This method defines a limited
set of primitives for capturing design logic, defining software structure and organizing the
software’s data. The primitives are used in a systematic and stepwise refinement of the
software requirements andin the construction of a software design whose correctness can
be assessed and confirmed at each step.

Software Correctness Verification

In the Cleanroom method, correctness is defined as the equivalence between a require-
ment and the design which supposedly implements the requirement. Designs are verified

Michael Dyer Managing the Cleanroom Environment
IBM Federal Sector Division
Bethesda, Md. 20817 July 31, 1991

- 343 -

using the functional technique for correctness verification [3], first by the designer when
constructing a design and subsequently by independent inspectors when reviewing the
design. Correctness proofs in the functional approach work off the design structure rather
than the embedded application logic, which allow the same proofs to be used across all
design levels. With some algebraic manipulation, the question of correctness for a total
software product can be reduced to the summation of the correctness proofs for the
component parts.

Independent Software Product Testing

Software products are tested for two reasons - first, to ensure that the software correctly
implements its design (structural testing) and, second, to ensure that the software satisfies
its specified requirements (functional testing). Structural testing is primarily the responsi-
bility of the software developer, while functional testing is generally performed by an
independent organization.

In the Cleanroom method, only functional testing is performed since the correctness
verification techniques, woven into the formal design method, satisfy all goals defined for
structural testing. Functional testing is still required in the Cleanroom method for validating
the implementation of the original requirements and a statistical approach [4] been defined
and proven effective. Functional testing is driven by probability distributions which are
defined against the requirements and generally track requirements usage in the software’'s
operating environment.

Software Reliability Measurement

Cleanroom defines software reliability in terms of software mean time to failure (MTTF)
which is a more meaningful measure for the user, which gives a positive quality indicator
(longer MTTF is better) and which can be estimated prior to software delivery. When tied
to a statistical testing approach, MTTF predictions during software development can
accurately reflect subsequent operational experience.

Statistical Process Control

Michael Dyer Managing the Cleanroom Environment
IBM Federal Sector Division
Bethesda, Md. 20817 July 31, 1991

- 344 -

Cleanroom allows continuous process improvement through the effective use of reliability
measurements taken during incremental releases of the software. Typically, incremental
releases of software are staggered across a development schedule, so that MTTF readings
from early releases can have dramatic impact on any combination of the specification,
development and test phases. To gauge where corrective actionis required in the process,
the variance between the recorded and the target MTTF’s can help identify what and how
much correction is needed.

CLEANROOM INTRODUCTION STRATEGY

Introducing a software development method into an existing development environment is
noteasy and, in the case of the Cleanroom method, is further complicated because it also
encroaches on the software specifier's and software tester’s areas of responsibility. A
clearly stated set of objectives must be defined which identify where and how much of the
Cleanroom method is to be used. The planning for a particular software development
entails Cleanroom training, identifying a tailored version of Cleanroom to fit the particular
development environment and organizing checkpoints for re-evaluating decisions on
technology selections. The training ensures a consistent level of understanding to plan the
integration of the Cleanroom ideas into an existing development environment and to
implement a problem solution. The successful Cleanroom project integrates the ideas into
its environment and does not try to revolutionize its development process. The successful
Cleanroom project also gives itself ample opportunity to change its process, as it gains
experience, rather than stick with ideas which are failing for any number of reasons within
the particular project environment.

Training in the Cleanroom Method

Training in the Cleanroom method is critical so that the project team has the depth of
technical knowledge to apply the component techniques with conviction and effectiveness.
The training is also necessary for the team’'s assessment and decision on which
components of the Cleanroom method to use, because of the problem characteristics or

Michael Dyer Managing the Cleanroom Environment
IBM Federal Sector Division
Bethesda, Md. 20817 July 31, 1991

- 345 -

development environment. This training is best conducted in two steps, with formal
instruction on the technical ideas followed by hands-on experience in applying those ideas
to the project’s particular problem.

The Cleanroom components to be covered in this training should include formal methods
for software requirements specification, structured programming practice, the functional
correctness model, statistical test methods, software reliability measurement and statistical
process control. For each component, in-depth training on the theory and practice should
be givento ensure that the selected method is understood and can be applied by the whole
project team. In this process, aspects of a particular technique might have to be modified
to fit the particular environment or to conform to organizational or contractual constraints
and standards. In general, the details, on which aspects of a given method should become
practice (assuming no loss of the kernel idea), tends to be less significant than the early
establishment and consistent application of a practice. This should eliminate the endless
debate on personal preferences within the team and should ensure a more effective use
of the method.

Some of the Cleanroom techniques might be viewed as beyond the scope of the project
definition or the abilities of the project team. In that case, serious consideration should be
given to deferring the introduction of those techniques until a later project or phase of the
current development.

In this training, formal instruction should be augmented with the attempted use of a
particular method in solving the problem at hand. Each project member should have the
opportunity to use the method, to decide its effectiveness to his assignment within the
project and to make his suggestions on project practice. For the requirements specifiers
and software developers, the hands-on experience should cover the specification, design
and verification of some part ofthe top level design forthe problem solution. For the software
testers, the hands-on experience should include the attempted definition of a top level
structure for the statistical data base to be used for the project’s test sample generation.
The objective of the hands-on experience is to confirm that the particular techniques can
be used for the application and by the project personnel. This experience is necessary for
organizing a tailored version of the Cleanroom method to be used on a project.

Michael Dyer Managing the Cleanroom Environment
IBM Federal Sector Division
Bethesda, Md. 20817 July 31, 1991

- 346 -

Selecting the Cleanroom Components for a Project

Cleanroom is not an all-or-nothing method for software development but rather a collection
ofintegrated components, which are intendedtobe usedasaunitbutcanalsobe effectively
used, individually or in combination. When starting a new project, a decision should be
made on where the project should enter the Cleanroom process. For example, if measuring
and using software MTTF is a critical requirement, then implementing the complete
Cleanroom method should be seriously considered. Statistical testing should be viewed
on its own merits as a functional test candidate, which can and has been used without the
other Cleanroom components. Verification based inspections can be introduced into most
software development processes, as long as software design is based on structured
programming. Current Cleanroom experience reflects positive results with different
approaches to introducing the Cleanroom method into a development organization and
then evolving into the acceptance and use of the total method.

Because of its breadth, the Cleanroom method lends itself to an incremental introduction
into a software development environment, where, in any giveninstance, only the techniques
appropriate to a particular problem and a particular project team are selected and used.
Force fitting a technique into a development situation is usually detrimental both to the
success of the project and to the acceptance of the Cleanroom method within the
development environment.

Planning the Introduction of Cleanroom

Adequate planning forthe introduction of the Cleanroom method is critical to ensure against
the potential for a project disaster, caused by the unwise or unsuccessful adoption of a
particular Cleanroom component. Project managers are encouraged to establish mile-
stones within the project schedules at which the progress of the Cleanroom technology
transfer can be statused and assessed.

The number of milestones and their placement within a schedule will vary from project to
project but, as a general rule, should appear frequently in the early part of the project
schedule. A general rule of thumb is to schedule the initial milestones for each decision in

Michael Dyer Managing the Cleanroom Environment
IBM Federal Sector Division
Bethesda, Md. 20817 July 31, 1991

- 347 -

the first two-three months of a project, since these decisions shape the development
process. Subsequent milestones for the particulars on the various decisions and for the
necessary support (training, tools, consulting) should be scheduled in the first six months.

A specific goal should be defined for each milestone with a quantification of the technology
transfer to the particular project. Project management should judge the progress being
made in transferring the technology and decide whether changes are needed (eg. more
training on specific technical topics) or whether the technology transfer should be stopped.
In this latter case, the plan for reverting back to previously used methods should have
been worked out, so that the recovery can proceed as effortlessly as possible. The planned
schedule should contain sufficient flexibility to ensure the time and the resources to
implement the recovery.

Generally, technology transfer would address developing the requirements specification
with a formal method, integrating the functional correctness model into the baseline formal
design method, eliminating development testing from the software process and imple-
menting verification based inspections. From a test and reliability perspective, the transfer
would address software testing with statistically representative user inputs and the
estimation of software MTTF on a continuous basis during development. For each item,
appropriate milestones should be defined to identify what was to have occurred, how
success would be measured, what forward plan was to be activated, what tolerances on
successful completion were acceptable and what recovery plan would be implemented in
the unsuccessful case.

Milestones for Formal Specification Methods

For formal requirements specification, an initial milestone might be the completion of a top
level software product specification, prepared by the lead engineer(s). A subsequent
milestone might address the elaboration of the next level(s) of specification for the
components of the software architecture. The intent of these additional milestones would
be to involve all project software specifiers in the use of the formal specification method,
to ensure that the specifier team can use the formal method and that the software
developers and testers can understand their workproducts.

Michael Dyer Managing the Cleanroom Environment
IBM Federal Sector Division
Bethesda, Md. 20817 July 31, 1991

- 348 -

The milestones would provide project management with the opportunity to assess whether
the formal specification method could be used for the particular problem and by the
particular staff. If the defined workproducts were not completed or unintelligible to the
developers, testers and customers, then the effectiveness of the technology transfer would
be suspect and some change in requirements specification is needed. Before reverting
back to natural language specifications, the adequacy of the initial training, the availability
of expert consultation and support tools and the levels of actual accomplishment should
be reviewed. Since the specification is key to the project start-up, problems with applying
the formal methods for specifications must be resolved, early in the schedule, and can not
be allowed to linger into development. Either corrective steps are taken to get formal
specifications on the project or the project reverts to established (ie. natural language)
specification practice.

Milestones for the Functional Correctness Model

Forintegrating the functional correctness model with the existing design practice, an initial
milestone might be the completion of a verified top level software design, which would give
the first level decomposition of the specifications for the software architecture. The
description might be a few pages of design language description, prepared by the project’s
lead designer(s). A subsequent checkpoint might be the completion of verified designs for
the next one or two levels of decomposition. The objective for this milestone would be to
give all the software designers on the project and opportunity to apply the functional model
in constructing a verified design.

The milestones would provide project management with the opportunity to assess whether
thedesignandcorrectnessideas could be appliedbythe lead and other software designers,
in developing a solution to the particular problem. If the designs can not be successfully
completed and verified to everyone’s satisfaction by the planned milestones, then the
effectiveness of the initial training in the functional correctness model, the completeness
of the requirements specification and the commitment of the staff should be re-evaluated
before proceeding. Any early problems with applying the correctness ideas need to be
resolved with corrective steps (eg. additional consulting support, the use of analyzers to

Michael Dyer Managing the Cleanroom Environment
IBM Federal Sector Division
Bethesda, Md. 20817 July 31, 1991

- 349 -

guide verification, etc.). The alternative would be to stay with the established design
practice, which probably means planning for more formal inspection and development
testing at the completion of design.

Milestones for Eliminating Developer Testing

For eliminating development testing, an initial milestone might be the completion of the
definition and planning of the library and configuration management procedures to support
the delivery of code prior to its execution. A preliminary plan would be acceptable
documentation for this milestone which would be prepared jointly by the lead software
developer(s) and tester(s). A subsequent milestone might be the definition of inspection
plans and milestones to ensure quality code delivery and of development procedures and
tools to ensure that the design and code can created in a non-execution environment.

The milestones would provide project management with the opportunity to assess whether
the project is serious about developing software without development testing and has put
in place the tools and disciplines to facilitate this development approach. If satisfactory
definition and planning is not completed by these milestones, then the commitment of the
project to this objective should be reviewed. Testing by developers is a tradition which will
not go away by decree but needs effective planning for it to happen (eg. separating the
design and development from the target computer, limiting target computer access to
testers, allocating a percentage (25-35%) of developer time to inspections, defining
handover tests for acceptance of software into test, etc.). Unless this early planning and
set-up is accomplished, the development will start on the wrong foot and the project
commitment to this objective will probably evaporate. Either the appropriate development
environment is organized to support development without developer testing, or the project
should revert to its established development practice, making the necessary adjustments
to accommodate developer testing.

Milestones for Verification Based Inspections
For introducing verification based inspections, an initial milestone might be the definition

andplanning ofthe inspection schedules, analysistool andinspection format. A preliminary
plan would be acceptable for this milestone, which was prepared by the lead software

Michael Dyer Managing the Cleanroom Environment
IBM Federal Sector Division
Bethesda, Md. 20817 July 31, 1991

- 350 -

developer(s). Subsequent milestones might be the completion of the requirements
specification for the analysis tool, of the verified top level design for this tool and of the
preliminary plan for testing the tool. This would be another opportunity to involve a
cross-section of the project in applying the selected Cleanroom methods.

The milestones would provide project management withthe opportunity to assess whether
adequate preparation is being made for introducing the verification based inspection into
the development process (eg. ensuring the allocation of sufficient personnel time, having
the analysis tool available when needed, working outthe formats ofthe inspection meetings,
etc.). If there is project difficulty in completing these milestones, then the interest and
commitment to introducing this new method should be re-examined and resolved (eg.
subcontracting the analysis tool development). Without the early definition and planning,
there will not be a smooth or problem free introduction of the verification based inspection.
Either the necessary time is taken early in the project or the project should stay with its
established formal inspection practice.

Milestones for Statistical Testing

For introducing statistical test methods, an initial milestone might be the definition of
database organization, for generating the test samples. A preliminary description would
be acceptable that defines a strategy for grouping the software inputs (eg. time, syntax,
safety, etc.) and for organizing a selection hierarchy (eg. time periods, severity levels, etc.).
The description would be prepared by the lead test engineer(s). Subsequent milestones
might be the definition of the top few levels of probability distributions, the selection (or
definition) of the generator support software and the encoding of an initial set of database
entries. These latter milestones would involve a larger segment of the software testers
and ensure acceptance of the statistical approach by the software testers.

The milestones would provide project management with the opportunity to assess whether
a statistical approach to test sampling can be defined by the test organization and whether
the mechanics of sample generation have been worked out. If there is project difficulty in
meeting these milestones, then the applicability of statistical test to the particular problem
needs to be reexamined and modified forms of statistical testing introduced (eg. multiple

Michael Dyer Managing the Cleanroom Environment
IBM Federal Sector Division
Bethesda, Md. 20817 July 31, 1991

- 351 -

user environments defined, existing traffic samples used in lieu of database definition,
etc.). Either the effort is spent on defining a statistical approach or the project reverts to
its established practice for requirements validation.

Milestones for Software MTTF Prediction

For integrating software MTTF prediction, an initial milestone might be the selection of
appropriate statistical models and the definition of a prediction procedure. A preliminary
plan prepared by the lead software tester(s) would be acceptable but would have to be
integrated with a statistical testing plan. Subsequent milestones might include the
installation and checkout of models, the definition of model validation procedures and the
definition of MTTF prediction and assessment reports.

The milestones would provide project management with the opportunity to assess whether
the project was set-up for MTTF calculations (ie. test interface, tools and procedures) and
had defined a project role for software MTTF (eg. basic quality measure, control in a
feedback process, etc.). If there is difficulty in completing the milestones, there should be
a re-evaluation of the project's ability to do statistical prediction (ie. statistics background
of staff, availability of models, etc.), of bottlenecks from the testing side (ie. statistical test
plans, timing units, interfacing, etc.) and of the project's interest and commitment to doing
something with the MTTF data. The fallback position would be use more traditional quality
measures and not bother with statistical modeling.

CLEANROOM PROJECT MANAGEMENT

Project management with the Cleanroom method is not measurably different for project
management when more conventional methods are used. One difference would be the
tracking of the technology transfer milestones which provide project management with the
opportunity to assess the introduction of the Cleanroom component techniques, to judge
their acceptance by project staff and to measure their contribution to project productivity
and quality goals.

Michael Dyer Managing the Cleanroom Environment
IBM Federal Sector Division
Bethesda, Md. 20817 August 1, 1991

- 352 -

A second difference is the public visibility given to software quality by the early placement
of software under formal configuration control and the continuous estimation of the software
MTTF during development. Typically, software goes through various levels of review and
inspection and various steps of developer testing, before it goes under configuration
management. The theory is that enough effort (people and methods) has been given to
removing errors, that the software is reasonably stable (small percent of remaining errors)
and that the software can be given public (outside the project and, possibly outside the
company) scrutiny without embarrassment. In the Cleanroom process, software is placed
under configuration management prior to its first execution, which requires higher
confidence and commitment from management in the Cleanroom’s zero defect design
strategy.

A third difference is the leadership and conviction that must be shown by project
managementin challenging accepted development practices and/or myths (eg. unit testing
by developers, the ineffectiveness of randomized testing, the absurdity of software MTTF,
the advanced mathematical background required for software verification and the futility
of formal methods with changing requirements). Cleanroom offers counter intuitive ideas
and methods which can and have been demonstrated to be practical and usable within
the typical software development environment. Project management must ensure that staff
skepticism in adopting these methods is overcome by providing the training, tools and
consultation support to facilitate their effective use.

A fourth difference is to manage process improvement into the development effort. This
requires observation and measurement of the process through the MTTF statistic,
recognizing problems flagged by a constant or decreasing MTTF statistic and ensuring
process correction via an increasing MT TF statistic. The incremental development strategy
affords the measurement opportunities from which process corrections (eg. increased
specification formality, broader participation in verification based inspections, etc.) can be
defined for subsequentincrement development and tracked forimprovement effectiveness.
The Cleanroom method provides a unique capability to project management for placing
their software development under statistical quality control.

CLEANROOM IMPACT ON THE SOFTWARE PROCESS

Michael Dyer Managing the Cleanroom Environment
IBM Federal Sector Division
Bethesda, Md. 20817 July 31, 1991

- 353 -

The introduction of the Cleanroom method would impact most steps in the software
development life cycle, as shown in figure 1 which summarizes the role of the life cycle
steps and the changes resulting from Cleanroom.

SUMMARY OF CLEANROOM IMPACTS
ON A DEVELOPMENT LIFE CYCLE MODEL

REQUIREMENTS SPECIFICATION
Function and Performance
but with
Usage and Build Statistics

SOFTWARE DESIGN/IMPLEMENTATION
Incremental Software Development
but with
Correctness Verification not Unit Test

INDEPENDENT SOFTWARE TEST
Integration & Test of Released Increments
but with
Representative Statistical Usage Samples

SOFTWARE ACCEPTANCE
Demonstrated Function and Performance
but with
Certified Software MTTF

Figure 1
Impacts on Software Specification

Software specifications define functional requirements and describe performance budgets
that constrain execution time, size, etc. and environmental constraints such as interfaces,
modularity, documentation, packaging and standards considerations.

With Cleanroom, the software specification is written with more formal notation to support
correctness verification. Several acceptable methods are available such as box structuring
techniques, formal specification languages (Z, VDM, etc.), and problem specificgrammars.
These formal methods force a closer analysis of the requirements and tend to minimize
ambiguity, inconsistency and incompleteness in the resultant software specification.

Michael Dyer Managing the Cleanroom Environment
IBM Federal Sector Division
Bethesda, Md. 20817 July 31, 1991

- 354 -

In addition to more formal specifications, Cleanroom forces the consideration of data on
software usage and software construction to drive statistical testing. This includes the
identification of software inputs and their expected usage probabilities to structure the test
data bases. Any incremental release strategy must be elaborated to factor the planned
availability of the software function into the test planning.

Impacts on Software Design

The major design impact is the introduction of functional correctness verification into the
design process. The Cleanroom design ethic is one of requirements specification, followed
by design of a solution to the specification, followed by verification of the equivalence
between the design and requirements. Verification is integral to the design construction
and imposes a control on the designer which gates the refinement of the software speci-
fication.

A second impact in the design step is the introduction of verification based inspections to
provide an independent confirmation of the design correctness. The verification based
inspection builds on the formal inspection practice [5] but re-orients the inspection to
correctness confirmation rather than error detection. The reorientation is achieved through
the use of design language analyzers which can determine the structure of the design and
formulate the sequence and content of the questions to be addressed in inspections.

Impacts on Software Implementation

The impact to software implementation from the Cleanroom method will depend on the
approach to software design. If design and verification are performed to full detail in the
design step, then implementation becomes a transliteration of design notation into pro-
gramming language notation.

An equally acceptable approach is to split the design refinement between the use of design
notation and the use of the implementation programming language. The implementation

Michael Dyer Managing the Cleanroom Environment
IBM Federal Sector Division
Bethesda, Md. 20817 July 31, 1991

- 355 -

impact is that the software coding would now be performed stepwise, with each step verified
for correctness and with verification based code inspections performed to confirm cor-
rectness.

Impacts on Software Developer Testing

The impact to this step is that it is no longer performed in the Cleanroom method. Close
adherence to functional correctness verification ensures that all of the error detection
situations addressed by developer testing are addressed in verification. With the Clean-
room method, the only reasons for software engineers to execute their software would be
to check the feasibility or performance of newly defined algorithms, to exercise support
software facilities and to confirm operating system services.

Impacts on Independent Testing

The Cleanroom method does not preclude testing because of software correctness veri-
fication, but rather relies on independent testing to validate that the software requirements
were correctlyimplemented. Cleanroomimpacts traditional testing by introducing statistical
techniques. This impact on the tester has proven to be one of the harder obstacles to
overcome in obtaining acceptance of the Cleanroom method. At the same time, statistical
test techniques have the greatest potential for significant savings in the single most
expensive part of software development.

CLEANROOM IMPACT ON THE SOFTWARE PRODUCT

Work on the Cleanroom method was originally started to improve the quality of delivered
software and initial experience indicates that this purpose has been met. The quality
improvement can be observed in quantitative terms from measures of software defects
and in qualitative terms from improved software specifications, simpler software designs,
faster error isolation and repair and fewer reported post-delivery problems.

Impact on Software Defect Rates

Michael Dyer Managing the Cleanroom Environment
IBM Federal Sector Division
Bethesda, Md. 20817 July 31, 1991

- 356 -

To get some feel for the levels of quality improvement being realized with the use of
Cleanroom, two snapshots of reported data are provided. The second version of the
COBOL Structuring Facility [6] was developed in five software increments. Error rates
were measured from start (first software execution) through the completion ofindependent
statistical testing and ranged from 1.4 to 5.7 errors per thousand lines of source code
(ksloc), with an average of 3.4 errors/ksloc.

A similar picture of quality improvement was seen in the application of the Cleanroom
method in the Software Engineering Laboratory (SEL) at NASA Goddard [7]. Error rates
were measured from the start (again first software execution) through the completion of
independent statistical testing and averaged 3.3 errors per ksloc. This compared very
favorably to the 6 errors per ksloc which was the average experience of similar software
developments in the SEL environment. In both the COBOL and SEL cases, the reported
post-delivery errors were extremely small and measured in fractions of an error per ksloc.

Impact on Software Design Simplicity

Oneresult experiencedin all uses of the Cleanroom method was a demonstrated simplicity
in the designs which were produced. Designers tended to be conservative in their designs.
The result was a software design which satisfied the requirements (no less but no more)
and used only known and easy to verify design ideas (nothing complicated nor exotic).
This was seen repeatedly in the verification based inspections where 90% or more of a
design could be confirmed in a straightforward manner and where design pieces, whose
correctness could not be proved simply, were generally returned for further simplification.

The same simplicity was evident during the independent testing of the software where it
could have been expected that the developer would need to execute the software to
recreate error conditions and diagnose the source of failures. This turned out not to be the
case [6,7] and developers were able to diagnose problems directly from their listings of
software statements. In projects [7], where the development organization had historical
data on the time spent in finding and fixing errors, the reduction in effort was like an order

Michael Dyer Managing the Cleanroom Environment
IBM Federal Sector Division
Bethesda, Md. 20817 July 31, 1991

- 357 -

of magnitude, with repair cycles going from months and weeks to hours and days. This
reduction is particularly remarkable since the software was always under formal configu-
ration management, which imposed procedures and regulations on the fix and repair cycle.

Impact on Software Development Productivity

Software quality was the underlying objective of the work in developing the Cleanroom
method. The added care in developing correct designs and the verification emphasis on
inspections were new and different kinds of work, which were originally thought to add to
the software design. Similarly, the added analysis in defining probability distributions and
building statistical data bases for test sampling was originally thought to add some delta
to the test effort.

A surprising result of the Cleanroom work is that software productivity did not go down
and, in fact, increased in several cases. From the development side, design simplicity and
the complete elimination of developer tester resulted in reduced effort that more than
compensated for the work to integrate correctness into the software designs. In the case
of the COBOL S/F and NASA SEL projects [6,7] the reported productivities were in the
range of 750 lines of source code per labor month, which is three to four times higher than
the average productivities, reported in the software literature.

Michael Dyer Managing the Cleanroom Environment
IBM Federal Sector Division
Bethesda, Md. 20817 July 31, 1991

- 358 -

REFERENCES

(1) M.Dyer
The Cleanroom Approach to Quality Software Development
John Wiley & Sons, Inc January 1992
(2) R.C.Linger, H.D.Mills and B.I.Witt
Structured Programming: Theory and Practice
Addison-Wesley 1979
(3) H.D.Mills
The New Math of Computer Programming
Comm ACM Vol.18 No.1 1975
(4) M.Dyer
Statistical Testing : Theory and Practice
Tutorial 7th International Software Testing Conference 1990
(5) M.E.Fagan
Design and Code Inspections to Reduce Errors in Program Development
IBM Systems Journal Vol.15 No.3 1976
(6) R.C.Linger and H.D.Mills
Case Study in Cleanroom Software Development
COMPSAC ’88 Proceedings 1988
(7) S.Green, et al
The Cleanroom Case Study in the SEL
NASA Goddard SEL Series SEL-90-002 1990

Michael Dyer Managing the Cleanroom Environment
IBM Federal Sector Division
Bethesda, Md. 20817 July 31, 1991

- 359 -

MANAGING IN THE CLEANROOM ENVIRONMENT

Prepared for
9th Pacific Northwest Software Quality Conference
Portland, Oregon
October 7,1991

Michael Dyer
IBM Federal Sector Division

Bethesd. Md. 20817

WHAT IS THE CLEANROOM METHOD

Technical and Organizational Approach to

Developing Software with Certified Reliability

Objectives
Focus on User Driven Definition for Reliability
Release Software with Known Reliability

Put Software Developed under Statistical Control

360

DISCUSSION OUTLINE

Overview of the Cleanroom Method
Strategy for Introducing Cleanroom
Cleanroom Project Management

Impacts on Software Process and Products
Lessons Learned

COMPONENTS OF THE CLEANROOM METHOD

Software Specifications

@ Formal Notation for Function and Performance

® Usage Distributions and Construction Plans
Software Development

® Rigorous and Formal Design Method
Software Correctness Verification

® Correctness Woveninto Design Process

@ Verification Based Inspection Process

CLEANROOM IMPACTS
ON A DEVELOPMENT LIFE CYCLE

REQUIREMENTS SPECIFICATION
Function and Performance

Independent Software Product Testing Usage ang‘gu';g'éta"sﬁcs

COMPONENTS OF THE CLEANROOM METHOD

@ Statistically B d Testi
alisticaly Basec Tesing SOFTWARE DESIGN/IMPLEMENTATION

@ Test Samples of Representative User Inputs Incremental Software Development
but with
Software Reliability Measurement Correctness Verification not Unit Test

@ Defined as Software Mean-Time-To-Failure (MTTF) INDEPENDENT SOFTWARE TEST

Statistical Process Control Integration & Tes:, 3: I'F’:le'llie:as(ed Increments
@® Continuous Process Improvement Representative Statistical Usage Samples
@ Driven by Software MTTF Projection SOFTWARE ACCEPTANCE

Demonstrated Function and Performance
but with

Certified Software MTTF

PROFILE OF EXPERIENCE WITH CLEANROOM METHOD

(Percent Of Cleanroom Projects Using Component Technique) STRATEGY FOR INTRODUCING C LEAN ROOM
Formal Basehne | Correctness | No Unt | Stanstcal MITF Average
Specdcaton | Desgn | Vencaton | Test [Testng | Predcnon | TotalUsage Training in the Cleanroom Method
Compleled 1BM : i @ Formai Specifications and Correctness Verification
Projects 33 100 66 100 | 66 50 69 -) : o :
: - @ Statistical Testing and Reliability Modeling
" Completed Exteral Tailoring Cleanroom to Development Environment
Projects 0 |100 | O {100 [100 0 50
® Expanding rather than Replacing Existing Process
Current 1BM 0 ® Considering Needs of Project and Staff
proiects 80 |100 100 [100 | 40 | 40 76 cenng ’
Planning the Inroduction of Cleanroom
Curnrent Extemal

Proiects 100 100 50 100 50 0 : 66 @ Checkpoints for Assessing Technology Transfer
f . @ Introduction of Support Tools

CLEANROOM WORKSHOPS

Mixture of Theory and Practice

Selection of Three Forty Hour Courses
® Formal Specifications - Box Structure Method
® Formal Design with Rigorous Verification

® Software Certification - Reliability and Test Methods

Prerequisites
@ Attendance by Project Teams

@ Set Theory, Logic and Statistics Background

ASSESSING TECHNOLOGY TRANSFER

Definition of Project Milestones
@ Minimum of Two Per Technology
@ Scheduled in First 3-6 Months of Project

Purpose of Milestones

©® Quantified Assessment of Technology Acceptance

@ Process Changes to Improve Technology Transter

® Technology Work-Arounds to Ensure Project Completion
Candidate Assessments

@ Formal Specification Methods

@ Functional Correctness Model for Soltware Verification

@ Elimination of Developer Testing Steps

@ Verification Based Inspections

@ Statistical Based Testing

@ Sohware MTTF Prediction

SOFTWARE SPECIFICATION WORKSHOP
TYPICAL CURRICULUM

Problem Analysis

® Function Decomposition

@ Function Allocation

® Requirements Traceability
Box Structure Analysis

® Design Principles

@ Black, Clear and State Boxes
Specification Preparation

@ Inspections and Reviews

©® Incremental Development Plans

® Usage Distributions

SUGGESTED MILESTONES FOR
FUNCTIONAL CORRECTNESS TRANSFER

Initial Milestone
@ Completion of Verified Top Level Design Which
Covers First Level of Requirements Decomposition
® Prepared by Project's Lead Designer(s)
Subsequent Milestones
® Completion of Verified Designs for Next
One to Two Levels of Requirements Decomposition

@ Prepared by All Project Designers

362 -

CLEANROOM PROJECT MANAGEMENT

No Change In Schedule and Resource Management

Cleanroom Unique Considerations
@ Active Assessment of Technology Transfer
@ Public Visibility with Early Software CM
@ Leadership in Overcoming Skepticism on Technical Ideas
(Correctness, No Debugging, Statistical Test, MTTF)

@ Commitment to Statistical Process Control

CLEANROOM PRODUCT IMPACTS

Product Quality Improvement
@ More Prevention with Correctness Model
Simpler Designs with Fewer and More Easily Found Errors
@ Earlier Detection - 90+ % Errors Removed Prior to Test
® Order of Magnitude Reduction in Errors Found in Test and Field

(3/ksloc during Test and < 1/ksloc post delivery)

Development Productivity Improvement
® Added Design Care Offset by Reduced Testing

(2:1 Productivity Improvement Realized)

@ Near Zero Life Cycle Maintenance

CLEANROOM PROCESS IMPACTS

Improved Specifications with Formal Methods

Correctness Model Integrated into Design Practice
@ Simplified Implementation from Design Attention

Developer Testing Replaced by Verification

Testing with Representative Usage Samples

Software MTTF for Tracking Product Quality

LESSONS LEARNED

About the Cleanroom Method
@ Practicat across Range of Applications
@ Brings Formality to Software Development
Mathematics and Functional Correctness to Design
Statistics and Software MTTF to Test

® Puts Quality Focus on Customer Interests

About the Application of Cleanroom
@ Tailorable to Existing Development Environments
® Usable by Software Practioners with Training
Hesitant Acceptance by Developers
Reluctant Acceptance by Testers

@ Provides Both Quality and Productivty Improvement

363 -

