Building Software that Captures Better Data

Danny Casale
Dan Elbaum

Pacific Northwest Software Quality Conference 2014
Todays Focus: Data Requirements

• My goal: shed light on how to make decisions about:

 1. What data to collect
 2. How to store the data you collect
 3. How to manage changes to the data your application collects

• My approach: walk through scenarios we've encountered in current and prior roles on software development projects in order to point out lessons learned.
Motivation

Data Requirements are growing in importance because:

• Storage is now fast, high-capacity, and low-cost

• Processing power is growing with highly distributed cloud computing

• Analytic tools and techniques are maturing (e.g. predictive analytics, machine learning)
Cost of Storage is Declining

• Network Throughput, Disk Performance, Database Storage Models
• Most importantly, **COST.**
Processing Power and Cloud Computing

• Pay for what they use, no large infrastructure cost

• Near real-time analytics

• Analytics jobs can be optimized to run when and where power is cheap
Analytics Tools

• Visualization Tools
• Business Intelligence and Self-Serve
• Predictive Analytics
• Machine Learning
Challenges in Collecting Data Requirements

• Requirements elicitation has historically focused on delivering user-facing functionality, not collecting data from users. Analysts don’t know what questions to ask.

• Data requirements are difficult to elicit because business stakeholders lack the data-savvy to understand available options.
1. Identifying What Data to Collect

- From Wikipedia...
 - In computing, an event is an action or occurrence detected by the program that may be handled by the program.

- Who
- What
- When
- Where
- Why
- How

(Corr and Stagnitto define the 7Ws analysis, we only discuss six.)
Example: Alerts

• The problem:
 • Many customers were unsubscribing from alerts and no one could figure out why.

• The data we had available to solve the problem:
 • How many customers subscribed / month
 • How many customers unsubscribed / month
 • How many alerts were sent / month

• The data we needed to solve the problem:
 • What alerts were sent, when, to which customers.
Example: Alerts

<table>
<thead>
<tr>
<th>Who</th>
<th>Which customer received the alert?</th>
</tr>
</thead>
<tbody>
<tr>
<td>What</td>
<td>Which alert did the customer receive?</td>
</tr>
<tr>
<td>When</td>
<td>At what date and local time did the customer receive the alert?</td>
</tr>
<tr>
<td>Where</td>
<td>Where was the customer when they received the alert?</td>
</tr>
<tr>
<td>Why</td>
<td>Why was the alert triggered?</td>
</tr>
<tr>
<td>How</td>
<td>Which channel/device did the customer receive the alert through/on? (e.g. text, email, phone call, etc.)</td>
</tr>
</tbody>
</table>
2. Determining How to Store Data

- Resolution – the granularity of measurement at which a value is stored
- Unstructured Data – free form text
Resolution Example: Cross-Channel Analytics

• The problem: Customers were using high cost channels like storefronts and talking on the phone with CSRs instead of low-cost channels like Web and IVR (Interactive Voice Response).

• The data we had available to solve the problem:
 • Which customer did what on which channel on a particular date

• The data we needed to solve the problem:
 • Which customer did what on which channel at a particular date and time
Resolution Example: Cross-Channel Analytics

<table>
<thead>
<tr>
<th>Who</th>
<th>Who triggered the event?</th>
</tr>
</thead>
<tbody>
<tr>
<td>What</td>
<td>What did the customer click? What button did they press?</td>
</tr>
<tr>
<td>When</td>
<td>When did the customer trigger the event? This should be a date/time to enable event-sequencing across channels.</td>
</tr>
<tr>
<td>Where</td>
<td>Which channel was the customer in? Do we want to record the IP address for geospatial analytics?</td>
</tr>
<tr>
<td>Why</td>
<td>Why was the customer using the channel? What was their goal?</td>
</tr>
<tr>
<td>How</td>
<td>Which device and operating system/browser did they use?</td>
</tr>
</tbody>
</table>
Unstructured Data Example: Unsubscribe

• The problem: Customers were unsubscribing from email. Customers provided feedback about why they unsubscribed in a free-text entry field, so someone would have to manually read each customer's response.

• The data we had available to solve the problem:
 • Free-form text description from customer.

• The data we needed to solve the problem:
 • A field that captured the high-level reason that the customer unsubscribed that could be analyzed and acted upon.
3. Handling Changes to Stored Data

• From Wikipedia...
 • In computing, an event is an action or occurrence detected by the program that may be handled by the program.

• Change Data Capture
 • Similar to auditing features
Example: Company Relationships

• The problem: Rollup reports could not be produced accurately for historical data because prior company relationships were not maintained.

• The data we had available to solve the problem:
 • Current business to business relationship information

• The data we needed to solve the problem:
 • Effective date, expiry date, and relationship type for all company relationships past and present.
Example: Company Relationships

<table>
<thead>
<tr>
<th>Who</th>
<th>Which companies participated in the relationship?</th>
</tr>
</thead>
<tbody>
<tr>
<td>What</td>
<td>What type of relationship was created between the companies?</td>
</tr>
<tr>
<td>When</td>
<td>When did the relationship begin and end? Do we need just date or date and time. Do we need to allow for back and future dating for accuracy reasons?</td>
</tr>
<tr>
<td>Where</td>
<td>Where is the relationship valid or where did the relationship event occur. Perhaps the relationship is only valid in certain countries or regions.</td>
</tr>
<tr>
<td>Why</td>
<td>Why was the relationship formed?</td>
</tr>
<tr>
<td>How</td>
<td>How was the relationship created? For example, was it through a merger or acquisition?</td>
</tr>
</tbody>
</table>
Conclusions

• Leverage the data your application handles by making conscious decisions around:

 1. What data to collect
 2. How to store it
 3. How to manage changes to it