
1

Using AOP Techniques as an
Alternative Test Strategy

Lian Yang

ly8838@gmail.com

Abstract

Ever since its inception [1], researchers and software professionals saw that Aspect-oriented

Programming (AOP) has huge potential to become a powerful new approach for software development

and software testing. There have been many papers in recent years on the subject of Aspect-oriented

Test, exploring various interesting ideas and techniques in software test automation [2], [3]. This paper

presents a strategic new approach, using AOP, for software test automation and attempts to incorporate

test automation filters (or interceptors in AOP jargon) in real applications through-out an application’s life

cycle.

Biography

Mr. Lian Yang is an independent software solution and quality consultant based at Redmond Washington.

He is the principal solution architect for Yachi Technical Consultant, Inc. His passion lies in cloud

computing, SOA, next generation programming languages, software performance issues, application

security, and software quality controls.

Since 1991, Lian has been working in software industry. As soon as he graduated from Portland State

University with an M.S. degree, he became a Software Engineer at ImageBuilder Software in Portland,

Oregon, working for award-winning PC games for kids.

He later joined Microsoft Corporation in Redmond Washington as a Software Developer in 1995 and

worked at several software testing and performance analysis tools. He then became a Lead Software

Developer in Test and led QA teams for MSN and Windows Storage Server.

After 2008, he worked as an independent consultant and served as lead developer for various consulting

companies, building and testing commercial web site for high profile clients such as Microsoft and

Avanade. He also worked as solution architect for start-up companies in cloud computing areas.

Lian has an M.S. in Computer Engineering from the Portland State University.

2

1. INTRODUCTION

The software testing landscape has changed dramatically in the past decades amid the development

paradigm shift from traditional waterfall to an agile-style test-driven development. The wide acceptance of

developer-driven unit test practices has made certain test automation practices obsolete. On the other

hand, the emerging cloud-based and mobile-based applications have changed the core of the traditional

software development life cycle, causing software test practice changes. Emphasis on rapid test turn

around, on-line test, and non-interference testing are more and more prevalent. As a result of this

development, the traditional software test methodology simply cannot meet the software application’s

development demand and the dynamic life cycle of average cloud and mobile application.

This article proposes an AOP-based white-box test strategy, which treats software quality assurance as

an aspect of software functionality and thus employs certain aspect oriented programming (AOP)

principals to software testing.

The goal is to make the always sought after white-box testing less obstructive and more dynamic. Upon

achieving this goal, the following effect will be shown:

- Testing and maintainability concerns would be treated as an essential feature, improving software

quality in today’s agile and fast paced software development arena.

- Making test automation non-obstructive by addressing testing concern at the architectural level

and defining these concerns at various point-cuts.

- Running and improving test cases and runtime diagnostics can be conducted at runtime in

parallel, without the need for re-compiling and taking your application offline, thus making test

more relevant to the entire life cycle of application.

1.1. ISSURES FACING SOFTWARE TESTING TODAY

With today’s trend for test-driven development, some testers feel a little lost as to what their roles have

become. Traditional test automation uses a black box test strategy and does a good job covering key

functional areas. However, it overlaps, to certain degree, with developer-driven unit test framework. This

could result in resource waste and cause under-testing in integration, performance, and more complex

test scenarios.

 Your test team should adapt to the new challenge and focus more on integration, performance, and live

incidence diagnostics, which require more white-box testing methods over black-box testing.

Traditionally, we can conduct white-box tests by adding test hooks and logs. Although they are still widely

used by developers as diagnostic and maintenance tools, they are rarely systematic and not widely

accepted as best practices. The side effects they cause to application are:

1) Loss of code brevity

Mixing test code and application logic produces ugly code and will likely cause long-term code

maintenance difficulties.

2) Performance

Even the test hooks and logs are usually turned off by conditional statements, they nevertheless

count on overall code size and their tiny runtime effects could accumulate and result in noticeable

performance loss.

3) Security

Mixing test code and development code together is always a security concern.

3

It would be nice to separate development concerns and test concerns entirely and apply test concern

across functions, classes, and modules, with minimal impact on development processes and code.

Aspect-oriented programming (AOP) provides a good alternative.

1.2. AOP CAN PROVIDE A NEW TEST STRATEGY

According to Wikipedia, aspect-oriented programming (AOP) is a programming paradigm that aims to
increase modularity by allowing the separation of cross-cutting concerns. AOP forms a basis
for aspect-oriented software development.

What are cross-cutting concerns? They are the concerns shared across different types, functions, and
modules, thus are not very natural and efficient to be expressed by traditional OOP concepts, such as
class inheritance and polymorphism. The latter is best for expressing families of entities, while the former
is better expressed by cross-cutting points, joint points, and point-cuts.
The following diagram illustrates the difference:

In the above on-line shopping example, we have polymorphic concerns for both user and product family

(solid vertical line). For the user family, the concern is Access Control while for the product family the

concern is pricing. The family-specific concerns are better expressed by OOP polymorphic functions

defined in each class family roots.

We also have common (cross-cutting) concerns for both class families for logging. For these concerns,

OOP polymorphic functions would work, although requiring lots of ad-hoc coding: we could add another

layer as the root class for both user and product families and use another polymorphic function to support

the cross-cutting concern for logging. However, that would be inefficient and not extensible because we

cannot expect that the newly added root would support all the future unrelated cross-cutting concerns.

More than anything else, the solution would possibly violate OOP’s single responsibility principal (SRP)

and open-close principal (OCP).

In essence, the OOP design philosophy dictates that the design changes should only extend vertically

within the class hierarchy, not horizontally across different class families.

On-line User

Anonymous

User

Authenticated

User

Admin

User

None-

admin

User

Product

Product with
Coupon

Polymorphism
Concern (ACC)

Polymorphism
Concern (Pricing)

Fig. 1: Polymorphic concerns () vs. Cross cutting concerns ()

Product with
Coupon that
can expire

Cross-cutting
Concern (logging)

Cross-cutting
Concern (logging)

4

2. AOP FOR SOFTWARE TESTING

Aspect-oriented programming is exactly proposed for solving the above cross-cutting concern design

issues. At the first thought, we could use “global functions” for cross-cutting concerns and apply these

functions across the types and modules. Conceptually, it is not wrong technically to realize AOP

principals. But that would hardly be considered as a new programming “methodology”. For AOP to

become useful beyond a talking point, we need some technology and tools to help us expressing cross-

cutting concerns without resorting to tedious ad-hoc coding. AOP does have a novel way and it is called

an “interceptor”.

An AOP interceptor is a design pattern which uses ways to inject code between two components and

alter the execution flow. Places where the interceptor can inject itself in are called joint points and the

filters with which the joint points are identified are called point-cuts, figuratively describing cutting a line

in between two components where code can be injected.

For the example, if we use AOP interceptor to implement logging for “all” the required class methods at

the before or after function call joint points, we can save lots of coding efforts and conceptual complexity.

The following diagram shows the logging example using interceptors to decorate function foo with a pre-

call logging and a post-call logging:

2.1. Design Goals

Using AOP in test automation, we are aiming to accomplish the following design goals:

 Rapid development evolution cycle

 More white-box testing for maintainability and runtime diagnostics

 Minimum performance impact

 No service interruption

 No security impact

 No interference with app development

 Not introducing a huge infrastructural change

2.2. AOP based White-box testing

To accomplish the above goals, we first take a look at what AOP can help in developing white-box test

automation:

Function bar Function foo Function foobar

log log

 Fig. 2: an illustration of an AOP interceptor.

Point-

cuts1
Point-cut 2

5

Traditional black box testing does not need to know the internal states of the target application. But today,

lots of complex bugs can only be understood and fixed by examining an app’s internal states, such as

resource usage, logged on users, connection status, and other domain-specific states. Those bugs are

“hot” bugs in that they can best be diagnosed during live sessions. It would help diagnostics of live bugs

by peeking into the internal state.

AOP can help us obtain above states by identifying point-cuts and intercepting function calls at various

joint points and gathering the information.

2.3. Identifying Cross-cutting Concerns

There is no way to foresee all the joint points that an interceptor is needed for, nor the kind of interceptor

is needed. Therefore the first design and architectural decision is to identify these elements:

1) Address Cross-cutting test concerns

- Verification of an internal state at a joint point (for both pre and post release test)

- Logging of the internal state for later analysis

- Injecting error condition at an internal joint point (more applicable for pre-release test)

2) Connect test automation with app logic by interceptors

3) Develop the test automation against interceptors separately along with app development

2.4. Code-Interception Techniques

There are built-in supports for AOP interceptors from various programming languages. For languages
that do not provide interception support, there are design patterns such as delegates or decorators as
“poor-men’s AOP” as well.

o Attributes

Attributes are the most popular ways to “decorate” a function or class. Together with reflection,

they are widely used ways to intercept a function call or type construction.

Pros: easy to use and proven to be an effective way to intercept any functions calls or class

constructions.

Cons: the attributes have to be fixed at design time and there is no way to add/remove them at

runtime.

o Filter infrastructure

Filter infrastructure provides a systematical way to “filter” a function call before or after a function

is called. A good example of the filter infrastructure is the ASP.NET MVC filters, which provides

an infrastructure to intercept any “controller actions” at different processing stages. This is a very

powerful technique for modifying a page output or monitoring certain server status before the

page is rendered. It can be combined with attribute to turn on/off the interception for individual

controller actions.

o Source code re-write or injecting new code

This is the ultimate way to intercept a call. This was impossible to do for traditional statically typed

languages such as C/C++. With the popularity if dynamical typed programming languages such

JavaScript (NODE JS as its server side version) and C# (still statically typed with support for

dynamics and runtime code ejection).

Pros: this technology goes beyond AOP and brings programming to an unseen new level.

Cons: lacks support from statically typed programming languages

6

o Decorator design pattern

Statically typed programming languages use this design pattern to achieve AOP interception.

Obviously, this technique requires lots of coding and cannot support runtime code injection and

requires recompilation for adding/removing decorators.

o Runtime configuration

Using runtime configuration, we can dynamically turn on/off a piece of code inside the target

application, thus achieves the enabling of test behavior without affecting app running. The

drawback of this approach is obvious in that we have to add code at the point-cuts.

2.5. More on Dynamic code generation

Dynamical programming gives us greater support for injecting dynamical code at runtime. For example, in

JavaScript it is pretty easy to “re-write” an existing function and create an entirely new function based on

the function:

function insertCode(func, replacer, pattern) {
var newFunc = func.toString().replace(pattern, replacer);
eval(newFunc);

}

JIT compiled code allows more dynamic code generation as well.

We could potentially generate an entirely new test automation application by altering the target app code

and inserting test code at different joint points. AOP.JS is such a tool.

This kind of tool serves as a base idea for future system which can dynamically “re-write” the target

system into a new system with full-fledged white-box testing automation capability.

Although this approached sounds like a far-fetched idea and not exactly aspect-oriented, it is inspired by

AOP and not too hard to achieve under dynamical programming systems such as JavaScript or .NET

platform. The potential of this technique sees many cutting edge usages and one of them is a completely

innovative test automation framework.

Original

App
Code Alteration and injection

Original App (with

injected code)

Wrapper App with Identical
functionality
 +
Test automation interceptors

 Fig. 3: illustration for a code generation system, which is not only an AOP
interceptor but a turn-key solution for dynamically generates a new application
based on an existing application – a test automation framework for any target
application in a runtime environment that supports dynamic code injection and
source code generation.

http://mulli.nu/2010/05/07/aop-js.html

7

3. CASE STUDY

3.1. An ASP.NET MVC 4 Web Application

Microsoft ASP.NET MVC provides great AOP supports via attributes and application filters. This was one

of the most important reasons for us to choose it as our web development platform.

Our web site is a political polling application, supporting localization, role-based security, and location-

based advertising. We started using an attribute-based filter to test certain aspect of test that would be

hard to automate. For example, we need to test location based resources such as style and images, as

well as localized content based on user roles and user locations. We found that it is extremely useful to

use a filter inside the web server so we can execute a test function when a user with “test role” submitted

a request. It has since been developed into a full-fledged test automation infrastructure, which can be

turned on/off in live site and conduct essential test in areas of security, localization, and content.

The following diagram shows the idea and infrastructure:

3.2. Advantage

1. Test automation does not interfere with app development as long as the “result filter”

infrastructure is considered and decided at the design time.

2. Test automation works with live system and support application operation / maintenance via test

role (using ASP.NET role based security). This is also secure since the “test role” is approved

and provisioned only by admin through managed deployment process and will not be exposed to

end users ever.

3. Can do white box test through-out the application life cycle.

Controller

View Engine

HTML Text

App State

and Store

App Model

Result Filter HTL
HTML Output

Test Model

User Request

 Fig. 4: an actual web application using AOP as test infrastructure. Test model
 can be turned on/off at live site and invoked via a global request filter.

Only If User Has a Test Role

8

3.3. Issues

1. Impact of performance

This should be minimal since the test model will not be called unless the request coming from a

test role.

2. Security

It should be well documented and the deployment is well managed so that no end user will ever

be granted test role.

3. Microsoft ASP.Net MVC platform centric

We are biased since we use ASP.Net MVC, which has first class AOP support. However, its idea

and philosophy shall apply to other platform that supports some sort of role based security and

server side filters.

3.4. Code Snippet

Create a global filter for test-only

 [AttributeUsage(AttributeTargets.Method, AllowMultiple = true)]
 public sealed class TestAuotmationAttribute : ActionFilterAttribute
 {

 /* Some state info is maintained here for HTML output capture
 (omitted)
 */

 // called when a request is processed by controller
 public override void OnActionExecuting(ActionExecutingContext filterContext)
 {
 // Do nothing unless used as test automation by testers
 if (filterContext.HttpContext.User.IsInRole("testAutomation") == false)
 {
 base.OnActionExecuting(filterContext);
 return;
 }
 /*
 Details for capturing output omitted…
 */
 }

 // called prior to HTML rendering. It is an ideal place for
 // capturing HTML output and context for verification and analysis
 public override void OnResultExecuted(ResultExecutedContext filterContext)
 {
 if (filterContext.HttpContext.User.IsInRole("admin") == false)
 {
 base.OnResultExecuted(filterContext);
 return;
 }

9

 /*
 Details for capturing output omitted…
 */

 // Test Automation method, passing cached app states, HTTP context, and
 // generated HTML output

 DoTest(CachedState, filterContext.RequestContext.HttpContext, htmlOutput);
 }

}

Register a global result filter at App Start-up

public class FilterConfig
 {
 public static void RegisterGlobalFilters(GlobalFilterCollection filters)
 {
 filters.Add(new HandleErrorAttribute());
 filters.Add(new TestAuotmationAttribute ());
 }
 }

3.5. Conclusion

As you can see from the above example, we have a simple and clean solution for white-box test

automation infrastructure with the AOP supports from ASP.NET MVC web platform.

We have created a test automation engine that can be used throughout product development cycle. In

particular, it can be used after the product has been published with negligible impact on the live site.

However, I want to remind you that the support for AOP is not without issues. In the above example,

there is still significant expertise needed to design and maintain the solution. It is not entirely dynamic

either.

We expect that with more advanced AOP support on the way, we will see more advanced test automation

solutions taking advantage of AOP methodologies.

10

REFERENCES

[1] Kiczales G., Lamping J., Mendhekar A., Maeda C., Lopes C., Loingtier J.M. and Irwin J., Aspect-

oriented Programming. http://cseweb.ucsd.edu/~wgg/CSE218/aop-ecoop97.pdf

[2] Rajan H. AND Sullivan K., Generalizing AOP for Aspect-Oriented Testing

[3] Misra A., Mehra R.: Novel Approach to Automated Test Data Generation for AOP. International

Journal of Information and Education Technology, Vol. 1, No. 2, June 2011

