Critical Factors Characterizing Projects and Lifecycle Models

30th Pacific NW Software Quality Conference (PNSQC) October 8-10, 2012 31th Pacific NW Software Quality Conference (PNSQC) October 14-15, 2013

> Kal Toth, <u>kalmanctoth@gmail.com</u> Herman Migliore, <u>herm@cecs.pdx.edu</u>

PNSQC 2012 & 2013 Critical Factors Characterizing Projects and Lifecycle Models, presented by Kal Toth

What this is About

Aim: Advance the discovery of a process that will select the most appropriate lifecycle for a planned project

Assumption: Critical factors characterize lifecycles & projects Hypothesis: a project characterization & matching process can be synthesized

Postulating: a possible approach / model

Encouraging: further exploration

Hopeful side-effect: wider recognition that a given lifecycle is not suitable for <u>all</u> projects

10/8/2012 PNSQC 2012 & 2013 Critical Factors Characterizing Projects and Lifecycle Models, presented by Kal Toth

Possible Lifecycle Selection Process

CREATE PROJECT DATABASE

- 1. Consider lifecycle models in common practice [start with 5 generic ones]
- 2. Each lifecycle characterized by <u>M</u> critical factors [say 8]
- 3. Collect large enough sample of project data to characterize each lifecycle [i.e. the relative merit/capabilities of each ... this is hard work]

EXECUTE PROJECT-TO-LIFECYCLE MATCHING PROCESS

- 1. For the project at hand:
 - a) Eliminate the obvious: lifecycles that don't align with competencies, culture, tools
 - b) Estimate the characterization factors [i.e. attributes of the problem]
- 2. For each lifecycle:
 - a) Assess the "degree of fit" between project's characterization data and each lifecycle's characterization data [hard part]
 - b) Conduct sensitivity and trade-off analyses:
 - Vary project's characterization data
 - Validate selection by estimating project costs, schedules and risks

PNSQC 2012 & 2013 Critical Factors Characterizing Projects and Lifecycle Models, presented by Kal Toth

Waterfall Model				
	Waterfall			
Attributes	Relatively sequential with development phases, major milestones & specified deliverables reviewed by stakeholder			
	At each phase loop back to prev. phase to correct problems Formal change control procedures to correct problems in earlier phases which may modify costs and schedule			
Benefits Advantages	Fosters thorough requirements, architecture and design before implementation			
Auvantages	Formalizes documentation and deliverables which facilitates project and contract management			
Shortcomings	Not very adaptive to project changes or market demands			
Disadvantages	Project visibility limited to documentation			
	Customer and user feedback and refinement (too) late			
	to incorporate lessons learned into the current project			
10/8/2012 PNSQC 2012	8 2013 Critical Factors Characterizing Projects and Lifecycle Models, presented by Kal Toth 9			

	Iterative
Attributes	Variants: WP, Incremental, Spiral, Evolutionary and Agile Repeated cycles, ongoing rework Parallel / concurrent development
Benefits Advantages	Parallel / concurrent development allows better schedules than waterfall Early discovery of problems Customer feedback – more likely to meet requirements Visibility into progress Process improvement (PI), lessons learned (LL)
Shortcomings	Harder to control project than waterfall

Incremental Lifecy	ycle Model
---------------------------	------------

	Incremental
Attributes	An iterative process that partitions large complex problems into independent parts, some of which may be mission-critical, and concurrently develops and integrates the parts
	Requirements & architecture should be stable prior to partitioning and change controls should be in place after baselining
	Appropriate for multiple delivery and release of capabilities
Benefits	Supports concurrent development, partial/progressive deliveries
Advantages	Each part can be managed relatively independently
	Separate parts can be monitored separately enhancing visibility
Shortcomings	Mapping requirements to increments can be challenging
Disadvantages	Unanticipated changes to requirements & architecture can break across increments and imply major rework later on

	Spiral
Attributes	A risk-driven plan-oriented iterative model where each spiral is a development iteration that aims to establish a plan for the next spiral (a.k.a. iteration).
	Risk assessments prior to each spiral determine the activities scheduled for a given spiral/iteration
	Reviews at the end of each iteration include an assessment of "lessons learned" that feed the next spiral
Benefits Advantages	Early iterations (spirals) systematically focus on consolidating the requirements and exploring technical problem areas through prototyping and simulating
	Later iterations transition in more waterfall-like iterations of development – concurrent spirals represent increments of development
Shortcomings Disadvantages	Project management and contracting more challenging as it requires more discipline to incorporate concurrency, risk assessment, and lessons learned

	Evolutionary
Attributes	An iterative exploratory development model for solving hard (non- trivial) technical problems and uncertainties
	Work products of this model are designed to discover technical solutions and elicit customer / user feedback
	Work products of evolutionary development are not considered to be of operational/deliverable quality
Benefits Advantages	Focuses project stakeholders (developers, managers, customers, and users) on feasibility and requirements rather than a solution. Detailed functions and features, as well as product qualification tasks such as reviews and testing can be avoided.
Shortcomings Disadvantages	There is a danger that managers and customers assume the prototypes to be of deliverable quality - they are not! And their expectations of actual progress will be inflated
/8/2012 PNSQC 20	012 & 2013 Critical Factors Characterizing Projects and Lifecycle Models, presented by Kal Toth

	Agile Development
Attributes	An incremental strategy that builds solutions from "stories" over short development iterations (typically 1-2 weeks) Focus is on working software over documentation Embraces change and close customer involvement Stories are typically prioritized and put into a backlog Planning is typically "time-boxed" Some methods advocate pair-programming (e.g. XP) Often employ "test-driven development" (TDD)
Benefits Advantages	Adaptive to change due to light-weight documentation Higher acceptance rate due to close customer involvement Informal stories and constant design refactoring reduces time and schedule defining requirements
Shortcomings Disadvantages	Customers don't always participate Frequent re-factoring can cause brittle systems Vulnerable to turnover and lack of documentation Harder to write contracts to meet vaguely stated requirements May not scale to large, complex and mission-critical projects

٦

	Waterfall	Incremental	Spiral	Evolutionary	Agile
Quality/ Maintainability	Н	Н	Н	L	L-M
Application Domain	M, H	M, H	M, H	L, M, H	L
Size / Complexity	L, M, H	M, H	M, H	L, M, H	L
Requirements Uncertainty	L	М	М	Н	Н
Progress Visibility	L	М	М	М	Н
User Involvement	L	L	М	М	Н
Requirements Volatility	L	L	М	Н	Н
Urgency	L	L	М	Н	Н

Γ

Summary	
 Goal: explored possibilities – not reams of data Suggested: 8 critical factors for characterizing lifecycles & projects Process for characterizing lifecycles & projects: 	
Likely the Biggest Challenges:	
lifecycles	
 Semi-quantitative techniques for characterizing new projects 	
 Developing an effective project-to-lifecycle matching process 	
 May be possible to adapt software estimating and COTS selection techniques [ref 	fs]
10/8/2012 PNSQC 2012 & 2013 Critical Factors Characterizing Projects and Lifecycle Models, presented by Kal Toth	28

Questions?

Welcome constructive criticism and validation

Hopefully this will motivate research & assessment projects that build on the ideas presented

10/8/2012 PNSQC 2012 & 2013 Critical Factors Characterizing Projects and Lifecycle Models, presented by Kal Toth 29