
__

Excerpt from PNSQC 2013 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 1

Administering Quality Assurance for
Large IT Programs

Sreeram Gopalakrishnan

sreeram.gopalakrishnan@cognizant.com

Abstract

Large IT programs, such as ERP implementations, are massively impactful long-term initiatives that
pervade multiple departments of the organization including IT, business, infrastructure, security, training,
PMO, third-party services and the like. Large programs are unique in several other ways too, such as the
high amount of executive visibility they carry, the number of different vendors and the consequent
dynamics involved, the sheer amount of interdependencies among the different parts of the program, and
the vast amount of changes that the interdependencies spawn. In short, a large program is much bigger
than the sum of its parts.

Administering Quality Assurance (QA) for such large programs calls for a vastly different approach vis-à-
vis for medium or small projects. The QA Program Manager, as the person responsible, will need to be
well-versed with the uniqueness of large programs. Despite QA fundamentals remaining the same, the
integrated nature of large programs are bound to stretch the QA processes to their limits. Hence, any
attempt to straightjacket QA as a bundle of processes, methodologies, tools and strategies is most likely
to fail.

The key to QAôs success, will be how well the QA Program Manager can manage the integration aspects
of QA, over and above managing the customary technical aspects of QA. The integration aspects cut
across areas such as team organization, team building, communication, test processes, test planning and
test management. Examples of a few integration items would include (1) org structure balancing QAôs
integration and independence needs (2) integrated dependency planning, tracking and reporting (3)
common set of testing processes and nomenclature that merge the vendor-specific differences (4) strong
governance model to control process adherence and deviations (5) framework to manage multivendor
dynamics and promote a badgeless team (6) integrated test environment landscapes, their conflicts, and
data refresh strategies (7) defect fix turnarounds and defect aging in a multi-vendor / multi-team scenario
(8) Regression scope and ownership and (9) Performance testing integration.

The paper elaborates on the management of the above listed integration aspects for large programs, and
discusses some of the better practices to deal with them effectively.

Biography

Sreeram Gopalakrishnan is a passionate and experienced QA professional with 14 years of industry
experience, currently working as QA Senior Manager at Cognizant Technology Solutions. He has
managed QA for large system integrations, technology migrations, new application developments etc. He
has an MBA in Systems, and also holds PMP and CMST certifications. He has presented / published
papers in international conferences / magazines, notable ones being IGNITE in 2010, Indian Business
Academy in 2009, and Software Test & Performance magazine in 2008.

__

Excerpt from PNSQC 2013 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 2

1. Introduction

As described in the abstract, large IT programs have several unique characteristics compared to small
and medium IT projects. These characteristics influence the application and management of QA activities
for large programs in equally unique ways.

In typical IT projects, QAôs involvement ranges a wide variety of activities from reviews, walkthroughs and
inspections, to the most well-known role of testing, and also extend to specialized roles such as
governance and consulting. Even though the underlying fundamental principles for these activities remain
the same across all types of projects, it is the size and type of projects that influence the activities with
respect to their scope, strategy or approach, rigor, situational significance, and the like.

The objective of this technical paper is to review these distinct aspects of administering QA for large IT
programs.

Due to the vastness of the subject, this paper will limit the discussion to what is different compared to the
standard QA practices or methods.

The paper starts with a discussion of the characteristics of large IT programs and their influence on the
QA processes.

It then discusses the top QA areas which in the authorôs experience have the maximum impact in the
context of large programs, namely: (1) QA org structure, (2) risk and dependency management, (3) test
nomenclature, (4) flexibility of strategy and governance, (5) status reporting cadence (6) environment
management (7) defect management (8) Regression model and (9) Performance testing.

2. Characteristics of Large IT Programs

Let us start by observing some of the characteristics of a large IT program that set it apart from a medium
or small IT project.

2.1 Span

Typically, large programs span multiple years and multiple releases, with incremental solution capabilities
delivered in each release. The programs involve and impact several business areas within the
organization, often concurrently, over an extended period of time.

2.2 Integration

Over the course of the program, integration happens not just of the IT applications, but also of the
business areas as a whole. Prior to integration, the IT work starts off as small individual projects within
each of the business areas, mostly at an application level. During this phase, each project goes through
its own SLDC of requirements-design-build-test-deploy. As the program rolls on, the integration starts and
the individual projects start to come together. The integration grows, and so do the complexity and cross-
impacts across the the projects or applications or business areas.

2.3 Vendor Methodology Differences

Each business or application area may have several IT vendors offering their products and services.
Each vendor would bring its own IT and QA methodologies and tools. At the initial stages of the program,

__

Excerpt from PNSQC 2013 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 3

prior to integration, the differences in methodologies and tools wouldnôt matter much, however once the
integration starts, they surely pose problems if they continue to remain distinct.

2.4 Multi-Vendor Dynamics

The multi-vendor scenario in large IT programs can potentially cause considerable amount of
competitiveness among the vendors, which if unchecked, will adversely impact the program, because of
mutual dependencies that exist among the vendor teams.

The competitiveness, sometimes even friction, is not limited to the vendors only. Even the IT and
business units within the customer organization may have misalignments and conflicts, as they too would
have operated as independent units prior to their collaboration as a part of the program. The vendor
organizations getting caught in the cross fire between the departments is not uncommon.

2.5 Top-Management Visibility

Yet another aspect worth drawing our attention to is the high amount of top management visibility that
large programs carry. The high executive visibility is due to the large budgets and spends involved, as
well as due to the potential stock price impact and market expectations from such high visibility programs.

The above listed unique characteristics, though are not QA-specific, they impact and influence QA
activities as much as they do for the rest of the program. They introduce numerous parameters and
challenges that force changes to the way QA is administered in a normal project. It is discussed in the
following sections.

3. Org Structure for QA Integration and Independence

Given the complexity of a large program, QAôs success in meeting its objective of assuring quality will
depend on how QA is structured within its own organization, as well as on how QA is integrated with the
rest of the program.

The key factors to bear in mind when defining the organizational structure would be QAôs needs of
efficiency in operations, integration with the program, and independence in its operations.

3.1 Efficiency within QA

Efficiency looks at the best ways of grouping QAôs tasks for maximum collaboration and productivity
gains. In addition to project delivery which is at the core of QA activities, there are several other tasks
typical of large programs that consume a considerable amount of time and effort. Unless if efficiently
grouped and managed, these tasks can prove to be quite costly. They include change request
management, budget and resource management, process management, metrics and measurement,
environment planning and governance.

3.2 QA-Program Integration

In large programs, due to their size and speed, things are constantly in flux and not many people get an
end-to-end view of the program. It becomes too much of changes to keep up with, even with the best
connected of teams. Without QA well integrated with the rest of the program, and especially with QA
being at the end of the SDLC, it often suffers due to late change notifications, late discovery of
dependencies and compression of timelines.

__

Excerpt from PNSQC 2013 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 4

3.3 Independence of QA

Independence stems from the fact that QA has to be objective in its assessment of quality and risks to
serve the best interests of the program. This cannot be done effectively, unless if the org structure allows
QA sufficient independence and authority. It needs independence to call out the status and risks as it
sees, and needs authority to secure the support of other teams to action on the risks and issues.

The diagram below illustrates an organization that supports the efficiency, integration and independence
needs of QA.

4. Managing Risks and Dependencies

Now that we have the right org structure in place that takes care of QAôs integration and independence, it
provides the launch pad for dealing with the project risks and dependencies in a proactive manner. The
intent should be to get visibility as early as possible into the changes, risks and dependencies that impact
the program, and also to provide QA the ability to influence the stakeholders positively to remedy a risk or
an issue.

The requirement then is to set up the right forums for interactions and communications where QA is a part
of all key discussions on program status, changes and risks.

Some of the key tools and mechanisms that have been found to be most effective for this are
Interdependency Meetings with Program Team, Weekly Status Meetings with Program Leadership, Risk
and Issue Logs.

4.1 Interdependency Meetings

Interdependency meetings are where the different teams involved in the program come together,
preferably on a weekly basis at least, and discuss the developments and changes happening in their
respective areas. The meetings typically involve the Program Manager as the chair, and the IT Project

__

Excerpt from PNSQC 2013 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 5

Managers, Solution Leads of each application area, and sometimes the Business Leads as well. QA
Program Managers must be a part of this meeting. The QA Program Manager can be supported by the
QA Leads of individual application areas, but it is not mandatory, as the intent of these meetings are not
to analyze the technical solution details or make instantaneous decisions, but more to discuss the plan,
schedule and dependencies, changes so that each team can take them away for its own impact
assessment.

The interdependency meetings are driven out of an Integrated Program Plan (IPP), the high-level project
plan that summarizes the key milestones from individual teamsô detailed project plans (dev, QA, business,
deployment, training etc). These meetings, notwithstanding the challenges of maintaining the IPP up-to-
date, are vital for communicating and analyzing project interdependencies and cross-impacts.

Shown below is the Gantt view of a sample Integrated Program Plan that shows its key milestones across
multiple releases.

Integrated Program Plan
Version - IPP_1.0 Year

Quarter

Period
Program Milestones Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Milestone Description
E

x

e

Status
Start

Date

End

date 3
0

-D
e
c

6
-J

a
n

1
3

-J
a
n

2
0

-J
a
n

2
7

-J
a
n

3
-F

e
b

1
0

-F
e
b

1
7

-F
e
b

2
4

-F
e
b

3
-M

a
r

1
0

-M
a
r

1
7

-M
a
r

2
4

-M
a
r

3
1

-M
a
r

7
-A

p
r

1
4

-A
p

r

2
1

-A
p

r

2
8

-A
p

r

5
-M

a
y

1
2

-M
a
y

1
9

-M
a
y

2
6

-M
a
y

2
-J

u
n

9
-J

u
n

1
6

-J
u

n

2
3

-J
u

n

3
0

-J
u

n

Rel#1-March Design Y 6-Jan 18-Jan Rel#1 DESIGN
Rel#1-March Build (incl FUT) Y 20-Jan 22-Feb Rel#1 BUILD
Rel#1-March Peformance Execution Y 11-Mar 28-Mar Rel#1 PERF
Rel#1-March SIT & Regression Testing Y 17-Feb 28-Mar Rel#1 SIT/ REGRESSION
Rel#1-March Training Y 4-Mar 15-Mar TRAINING
Rel#1-March UAT & Regression Testing Y 24-Mar 28-Mar Rel#1 UAT
Rel#1-March Go Live & Warranty Y 29-Mar 26-Apr Î Rel#1 GO-LIVE
Rel#1-April Design Y 14-Jan 29-Mar Rel#1- APR DESIGN (SAP/ BI)
Rel#1-April Build Y 18-Feb 5-Apr Rel#1- APR BUILD
Rel#1-April FUT Y 1-Apr 9-Apr Rel#1- APR FUT
Rel#1-April SIT/ Regression Y 8-Apr 16-Apr Rel#1- APR SIT/ REGRESSION
Rel#1-April Peformance Execution Y 15-Apr 19-Apr Rel#1- APR PERF
Rel#1-April UAT & Regression Testing Y 15-Apr 19-Apr Rel#1- APR UAT/ REG
Rel#1-April Go Live & Warranty Y 21-Apr 17-May Î Rel#1 - April Go-LIVE
Rel#2-May Design Y 1-Feb 29-Mar Rel#2 - MAY DESIGN
Rel#2-May Build (incl FUT) Y 22-Feb 17-Apr Rel#2 BUILD/ FUT
Rel#2-May Performance Execution Y 29-Apr 17-May Rel#2 PERF
Rel#2-May SIT & Regression Testing Y 10-Apr 10-May Rel#2 SIT/ REGRESSION
Rel#2-May Training Y 22-Apr 4-May TRAINING
Rel#2-May UAT & Regression Testing Y 12-May 17-May Rel#2 UAT
Rel#2-May Go Live & Warranty Y 19-May 20-Jun Î Rel#2 GO LIVE

2013

1 2 3 4 5

Q1 Q2 Q3

6 7

__

Excerpt from PNSQC 2013 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 6

The illustrations below are those of the Integrated Program Plan and detailed QA project plan in Microsoft
Project. It shows how the detailed QA project plan is tied into the Integrated Program Plan.

__

Excerpt from PNSQC 2013 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 7

4.2 Weekly Status Meetings with Program Leadership

Weekly Status Meetings with Program Leadership is another important forum that serves a very important
function. Unlike Interdependency Meetings where the focus is on cross-project dependencies and
impacts of plan or schedule changes across different teams, the weekly status meetings are to discuss
progress against plan. Actual progress against plan is discussed and the top factors slowing down the
progress are either resolved or marked for escalation. Due to the size of the program, the Weekly Status
Meetings are conducted out of Summarized Program-Level Weekly Status Reports, that are rolled up
versions of the Detailed Weekly Status Reports of individual project teams.

The below two illustrations are those of program-level weekly status report, and QA-level weekly status
report. You can notice how the summarized QA milestones in the program-level report are blown up into
low-level milestones in the QA-level report.

__

Excerpt from PNSQC 2013 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 8

5. Test Phase / Type Definitions and Nomenclature

One of the common problems in large programs is the difference in the ways in which the vendors
involved refer to the test phases and test types. Usually, each vendor brings its own QA methodology and
nomenclature. While this is not a problem during the initial phases of the program where they operate in
silos, this starts to pose a problem once the integration starts. With each vendor referring to a particular
phase or type of testing in different terms, it leads to confusion and debates.

To quote a few examples, a certain vendor might refer to the QA phases as Functional Unit Testing,
Integration Testing, System Testing, User Acceptance Testing, whereas some other might refer to them
as System Testing, System Integration Testing, User Acceptance Testing. In the above example, the
Functional Unit Test of the first vendor would be the near equivalent of System Testing of the second
vendor and the Integration + System Testing of the first vendor would be the equivalent of System
Integration Testing of the second vendor. Such differences cause a lot of confusion and arguments during
the course of a program. Hence is imperative that the QA organization comes up with clear definitions of
the test phases and their nomenclature.

Another issue commonly observed with test phase and test type definitions is that not everyone in the
program would be clear about the differences between Test Phases and Test Types, particularly the non-
QA teams. Test Phases and Test Types get used interchangeably adding to the confusion.

A third issue related to test phase and test type nomenclature is the large number of non-standardized
test types that each vendor QA team brings in as a part of its methodology. String testing, Assembly
testing, Gravy testing, Connectivity testing, Link testing, Process-oriented testing, Data model testing are

__

Excerpt from PNSQC 2013 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 9

some examples of the non-standardized test types. Even smoke and sanity testing are understood very
differently by different teams. While there is no disputing the fact that the non-standardized test types
have specific relevance to the program, they need to be clearly categorized or slotted into any of the
standard test phases to prevent confusion about when or why they occur.

Given below is one of the more suitable ways of categorizing test phases and test types for large
programs.

6. Flexibility of Test Strategy and Governance

As a part of defining the QA methodology for the organization or the program, the definition of test phases
and test types involves not just the nomenclature, but also the definition of processes involved in the test
phases and test types. Definition of the test processes typically follows the industry-wide model of ETVX,
where the entry criteria, tasks and validations, and exit criteria are clearly defined for each test phase and
test type. The definition and monitoring of ETVX will be a part of the QA governance activities.

In the case of large programs, where the ETVX model would put to test is in defining its tolerance limits.
In other words, the maximum permissible deviations from the benchmarks should also be a part of the
ETVX, along with the approval mechanisms to effect the deviations.

Defining tolerance limits thus is a critical element of the governance process, without which QA
governance would run the risk of either degenerating into an ineffective control mechanism or be seen by
the other program teams as too rigid and non-pragmatic to meet the objectives of the program. It is a fine
line between ensuring effective process adherence and risking excessive rigidity.

A few examples of scenarios that will require guidelines to be published for permitting deviations are:

ü Can SIT Cycle-2 be allowed to start when you have defects open in SIT Cycle-1

__

Excerpt from PNSQC 2013 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 10

ü Can UAT be allowed to start when SIT is not complete

ü Can Performance testing overlap SIT, or should it wait till SIT is complete

ü Should functional regression test be repeated if late Performance tuning changes get delivered

Such scenarios are very situational and it is very difficult to even come up with all possible scenarios.
Hence we canôt be prescriptive with the solution as well. The least that can be done is to define a
governance framework that can quickly and effectively judge on such scenarios as they happen, avoiding
the bureaucratic traps.

7. Setting Up a Status Reporting Cadence

High executive visibility automatically means high emphasis on quick, accurate and integrated status
reporting. One of the most difficult aspects of a large program can be to get the status reporting right ï
that is, to get a single integrated view of the program status that is consistent with the status reported by
the individual teams that constitute the program. Silly as it might sound, in reality it can be a daunting
task. In a program, each team would create several status reports intended for different levels of
audiences, with different levels of detail.

As much time as it takes to roll up the project status bottom-up through the different levels, the thick and
fast churn of events in a large program shortens the shelf-life of the point-in-time reporting. It thus
requires careful planning of the timing of the entire status reporting cycle, starting from report
consumption, working backwards to report generation and roll up.

Each program is different and will need to define its own status reporting process. But there is no denying
that it needs to be defined globally for the program and not left to the choice of the individual projects or
teams.

The status reporting process should clearly spell out the following:

ü The levels of report that will be required and their intended audience

ü The objective of each of the report and its content

ü The frequency and specific timing of each of the report

ü The data sources for the reports and the process of report generation and publishing

What can really help is a visual representation of the reporting cadence that shows the different reports
with their expected timelines.

__

Excerpt from PNSQC 2013 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 11

Given below is a suggested list of QA status reports optimized for maximum efficiency of reporting, with a
mention of the intended audience, frequency and key contents.

What is equally important is to have a standard format for each of the reports. This goes a long way in
representing information in a uniform way across all projects in the program, making them more
actionable, and helping with the ease of consolidating the lower-level reports get into higher levels.

__

Excerpt from PNSQC 2013 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 12

8. Test Environment Planning and Management

Talking about dependencies, the single-most biggest dependency for QA in any project is usually the
availability and readiness of QA environments or landscapes (a cluster of connected application
environments required to perform integrated testing for a program release).

Readiness of test environment covers multiple facets such as ensuring the availability of the physical
application environments or servers, ensuring that the environments have the right application code and
configuration versions, ensuring that the environments have the required quality and quantity of data,
ensuring that the middleware and interfaces that form the plumbing between applications are connected
and ready, ensuring that the test team members have the right accesses to the application environments.

In a large program, while the above fundamentals still hold good, the environment management effort and
complexity gets accentuated as described in the following sections:

8.1 Integration with Release Management Function

Due to the size and complexity of the program, at any given point of time, multiple releases of the
program would concurrently be in the testing phase, albeit not necessarily in the same phase of testing or
in the same QA landscape. Ensuring that each QA landscape has the appropriate code versions for the
release will be a critical QA environment management activity.

For this, the rules of collaboration between the QA environment management and release management
functions will have to be clearly defined. Depending on the organization, the release management
function could be at the organizational or program level. There could be several ways of collaboration, but
the common two models are: (a) release management is completely owned and performed by the
organizational/program level release management team for all environments including QA environments,
and the QA environment team merely governs the process for QA environments (b) release management
is owned by release management team, but performed by QA environment team for the QA
environments.

8.2 Environment / Landscape Reservation

Often in large programs, due to cost reasons, not all environments can be dedicated or exclusive. In such
cases, the available environments are shared across multiple releases within the program, or sometimes
even with other projects outside the program. Hence, careful planning is necessary for reserving or
blocking the specific shared environments for a particular release. The environment sharing complicates
matters when an earlier release falls behind on schedule, impacting the environment availability for the
subsequent ones. Despite the above limitation, environment reservation is a basic requirement in a large
program. Given below is an illustration of the QA environment schedule that is owned and managed by
the QA Environment team.

__

Excerpt from PNSQC 2013 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 13

For the issues of environment conflicts and schedule dependencies quoted earlier, there are several
innovative solutions available today. Environment virtualization, cloud, and on-demand environment
provisioning tools are a few of them. The details of these topics are beyond the scope of this paper.

8.3 Test Data Synchronization and Refresh

Yet another unique requirement of a large program is that SIT, and sometimes UAT too, requires the
various applications in a landscape to have synchronized data, without which the integrated business
scenarios will be difficult to test. In my experience, almost 40% of the effort involved in SIT, particularly for
the end-to-end business flow tests, goes for data readiness. Thus, it is a significant activity. Let us
examine how data readiness works in a program.

Most of the times, the base data in each application environment is set up by copying a slice of
production data. Synchronization would mean that all the production copies should be of the same or
nearly same date, so that the business flows between the systems do not fail for want of synchronized
data. This requires meticulous data planning. Though there are data management tools available, one
thing to remember would be that the tools can only simplify the mechanical and repeatable tasks of data
management.

The real challenge is more in defining the data requirements, that is, in identifying the right data sets that
fulfill the end-to-end business scenario needs. It will largely be a manual task, and will require a deep
understanding of the data integration design. The trick here is to create an exclusive Data Lead position
and staff it with the best person in the team, one who would have the understanding of the cross-system
data flows. This person then would drive integrated data planning sessions among the participants of SIT,
in which the data requirements are discussed and documented for each scenario. The Data Lead plays
the key role of bridging the gaps in understanding of data among the individual teams.

Once the requirements are clear, this is where the data management tools can help. Tools can be
explored for efficiency with the repeatable tasks of masking, sub-setting, archiving and so on.

Further, in the case of those application environments that are shared across multiple releases or
projects, care should be taken not to refresh the data without checking the impacts to the dependent

__

Excerpt from PNSQC 2013 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 14

projects or releases. The environment schedule that we discussed earlier can be leveraged to indicate
the data refreshes planned, helping teams to call out any adverse impacts well in advance. The below
chart illustrates the data refresh schedule embedded into the environment schedule.

8.4 Factoring Time for Smoke Test

A big mistake that several programs make is in not factoring sufficient time for smoke test of the
environment prior to SIT start. If system testing has preceded SIT as it would normally do, then smoke
test of individual applications would be less of an issue. However the middleware, that constitutes the
data transfer mechanism between the applications, would surely have been an untested area thus far.
Hence, smoke test of the data transfer mechanism would fit in right at the start of SIT, and the actual SIT
cannot start until the smoke test is completed and data flow is established. One challenge with getting the
integration to work would be the multiple layers of technology involved in the middleware, with each layer
possibly owned by a different development team. Fixing middleware issues thus involves a lot of triage
and analysis, with the issues often going around several times between the teams. A best practice
successfully followed for smoke test of integration is a war-room with the testers and development teams
seated around a table.

9. Defect Management

The importance of a well-defined defect management process for any project cannot be overemphasized.
Once a project or a release enters the testing phase, defects and the various defect metrics become the
central subject of almost all the project discussions and status meetings.

The different facets covered by the defect management process will include defect lifecycle, defect
severity definitions, defect triage meetings, defect metrics, defect reports, defect management tool and
the like.

With the premise that a robust defect management process is in place for a large program, there exist
several unique challenges in a large program that would require special treatment from a defect
management standpoint vis-à-vis a regular project.

9.1 Defect Triage during SIT

Defect triages during the system testing phase involve fewer teams, more focused discussions, and thus
quicker resolution of defects. However, in the SIT phase of a large program, particularly when the big
end-to-end business scenarios get tested, the defect triage meetings would require development and/or
functional teams, in addition to the QA teams, from all the integrating application areas. The numbers

__

Excerpt from PNSQC 2013 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 15

become unwieldy and the teams donôt think of it as the best use of their time. The all-hands triage
meetings thus become counter-productive.

A recommended best practice is to have one or more dedicated defect managers for the program who
can drive and co-ordinate the defect resolutions across various teams, and an unambiguous method
defined to identify the top priority defects for the day.

The defect managers conduct the daily defect triage where the defects assigned top priority are
discussed. The triage is attended by the QA leads of all application areas, who in turn conduct focused
defect-based discussions with the development and/or functional leads of the relevant application /
business areas. The QA, development, functional and business leads are educated on the need to keep
the defect information up-to-date in the central defect management tool. The defect managers do periodic
follow ups during the course of the day with the assignees of the defect.

9.2 Defining Defect Turnaround SLAs

Defect aging is a vital metric that indicates the overall defect management efficiency in a program. At a
granular level, it is a combination of the efficiency of the triage process itself, the efficiency of the
development teams to turnaround fixes and the efficiency of the QA teams to re-test the fixes. While QA
has control over triage and re-test, fix turnaround is not within its control. Nonetheless, fix turnaround time
has a big impact on QAôs ability to get through the planned test coverage within its stipulated time.

Any attempt by QA to define organization-level or program-level defect turnaround SLAôs most likely
would meet with a lot of resistance from the development teams involved. This is primarily due to the fact
that SLAôs typically have contractual implications for the development vendors. Unless if the vendor
contracts had defect SLAôs built into them, it would be hard for the QA organization to get the
development teams to agree to SLAôs. This is where QAôs ñindependenceò as per the program org
structure would come to help. QA will require the Program Sponsor or Organization Leadership to exert
its influence to come up with a solution that is mutually acceptable to both development and QA teams.

One approach would be for QA to publish the expected turnaround times as ñguidelinesò, instead of
terming them ñSLAsò. The ageing of the defects would be measured and team-wise ageing reports would
be published periodically against these guideline values as the benchmark. Though this approach would
lack contractual or legal muscle, it can prove to be quite effective in improving the ageing because of the
transparent and actionable information it provides to the program management.

9.3 Usage of Severity and Priority

Generally, the usage of severity and priority of defects is not very well understood by QA and by the other
teams in the program. By industry-standard definitions, severity refers to the impact to business, and
priority refers to the impact to the test team. In the context of a large program, confusion often is over
which parameter should drive defect resolution by development team ï should it be priority or severity. A
recommended best practice would be as follows. In the initial stages of the testing phase, in the interest
of early defect detection, QA teamôs aim would be to hit as many test cases as possible in the shortest
possible time. Here the priority of defects should drive the defect resolution. In other words, in the early
stages of testing, it is more important to fix defects blocking big chunks of test cases, thus paving the way
for more functionalities to be flexed early. At this stage, fixing defects that would have a large business
impact in production but a minor testing impact, would be second priority. As testing approaches the exit
gate of a test cycle or a test phase, severity and priority would converge, that is, high severity is what
would be high priority as well. In other words, to exit a particular test cycle or test phase, it is more
important to close the defects that would have bigger business impact.

__

Excerpt from PNSQC 2013 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 16

10. Regression Model

Quoting standard QA text, regression testing is testing done to ensure that the code has not regressed
due to the changes made. In large programs, this generic definition will require to be made more specific
with respect to the scope, ownership and methodology of regression ï which we will collectively refer to
as the regression model.

10.1 Scope of Regression

When there are multiple releases occurring in a program, there are two different views of regression
possible. The first view considers the scope of regression to be all functionalities up to and including the
just previous release. The second view expands the scope of regression to include even the
functionalities of the current release, to be regression tested post SIT and UAT defect fixes. While the
second view isnôt technically incorrect based on what point in time used as reference, it is uncommon.
Regardless, the scope of regression ï as excluding current release functionalities or including current
release functionalities ï will need to be spelt out at the outset.

A reason why the scope needs to be delineated as above is because the scope under the two views may
fall under two different QA teams, which could be two different vendors in some cases. In large programs,
due to the large size and scope of regression, it is normally handled by a separate team, which is not the
SIT team. The ñdedicatedò regression team thus would be responsible for the scope under view #1,
whereas the SIT team would be responsible for the scope under view #2.

10.2 Ownership of Regression

The above mentioned model is just one model of scope and ownership split. Under this model, there is
surely more focus and coverage on regression, but at a proportionately higher cost, and sometimes with
lesser agility due to knowledge transition required between SIT and regression teams for the newer
functionalities.

There are alternate models possible, addressing the negatives mentioned above. For example, in some
programs, there may not be a ñdedicatedò regression team. The SIT team themselves would handle
regression responsibility. While this avoids the need for knowledge transition from SIT to regression team
for newer functionalities, and results in cost efficiencies, the SIT priorities diminishing regression focus is
a realistic risk to be weighed.

A hybrid of the above two models is the third alternative. The regression model thus is dictated by
parameters such as focus, agility, cost and risk desired.

10.3 Methodology of Regression

In any project, best practice recommends that there ought to be a continuous regression phase and a
final regression phase. Continuous regression phase runs parallel to SIT, UAT and Performance test
phases. Final regression occurs after the SIT, UAT and Performance test phases have concluded, and a
code freeze is enforced.

__

Excerpt from PNSQC 2013 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 17

The challenge is that in most programs code freeze remains idealistic, and never happens in reality,
unless if it is a truly critical project. Due to time pressures SIT, UAT and Performance test phases slide
and cut into the code freeze phase, in turn making final regression redundant.

The regression strategy in such a case will be to try and minimize the risk of late SIT, UAT or
Performance defects. One approach here is to perform shorter impact-based regression cycles towards
the end of regression. The impact-based cycles would focus on regression impacts of the SIT, UAT and
Performance defects found during the intervals of regression.

11. Performance Testing

To wrap up this paper, we will now discuss the challenges associated with Performance testing in the
context of a large program.

11.1 Integrating Performance

It is a well-known fact in QA circles that Performance testing is considered the poor cousin of Functional
testing. Performance testing doesnôt get the attention it deserves, at least until system testing and system
integration testing are nearly completed, and Performance testing comes into the critical path of the
project or release.

This can be a costly mistake in any project, and more so in a large program, because the large scale
integration involved can compound the performance issues multifold. It requires Performance testing to
be integrated fully with the program, just as the rest of QA is, right from the early phases. All the
integration aspects mentioned in the earlier sections of this paper, namely, the org structure,
interdependency meetings, integrated status reporting, test nomenclature, governance framework,
environment planning and defect management would be as applicable to Performance testing as they are
to the other test phases, although the environment requirements and test processes for functional and
Performance testing are different.

To quote a successful best practice in this area, it is called the one-face-QA model. It is a specific org
structure arrangement to ensure that the integration truly happens on the ground. In the model, for each
project under the program, there will be a single overall QA manager, who would be accountable for the

__

Excerpt from PNSQC 2013 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 18

integration of all phases of testing happening in that project, even though different test phases could be
the accountability of different teams or vendors. This will make sure that Performance does not get left
out of the loop in any of the program changes or communications.

11.2 Performance Requirement Gathering

Yet another challenge confronting Performance testing in large programs is that performance requirement
gathering process is often found to be rudimentary. The reasons are many. The relative lack of
importance associated with Performance testing compared to Functional testing is surely a factor. There
are inherent difficulties too. Performance requirements are harder to define, especially when the systems
or their components are new, and thus lack historical data to provide a reference. Solution architects and
business are unsure about the average, peak and breakpoints transactions loads and user volumes to be
expected. Requirement definition in such cases turn into a trial-and-error, with the values being revised a
few times based on the actual test results observed. This approach causes much rework and pushes the
Performance test timelines very close to the deployment dates.

Performance requirement gathering process thus needs to be made more sophisticated. Workshops
involving solution architects, business and performance engineers are a good way to avoid the
uncertainties associated with understanding and defining of performance requirements. The workshops
can be complemented by analysis of production performance data gathered through a pre-defined tool-
based production monitoring process.

11.3 Application Performance vs. Operational Clock Performance

One thing unique to large scale integrations is that individual application performance is only half the
battle. When several applications integrate, the end-to-end performance of the business process flows
and batch job schedules (referred to as operational clock) are equally critical. The former does not
automatically guarantee the latter. Operational clock performance requirements will have to be separately
defined and tested for.

__

Excerpt from PNSQC 2013 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 19

12. Conclusion

The paper is an elaboration of the unique challenges associated with administrating QA for large-scale
system integration programs such as ERP implementations. The emphasis is on highlighting how the
characteristics of a large IT program influence the application of QA processes and principles vis-à-vis
small and medium IT projects.

Alongside the challenges, a number of the best practices and solutions have been discussed too, mostly
based on the authorôs successful prior experience. However, the best practices and solutions are by not
meant to be prescriptive. Each program is different, and there can be several alternate solutions possible
for the challenges.

Several of the topics discussed would qualify as excellent materials for detailed analysis and study, and
thus contribute to the expansion of the QA body of knowledge, particularly in the area of QA program
management.

13. Glossary

DSR Daily Status Report

ERP Enterprise Resource Planning

ETVX Entry Task Validation Exit

IPP Integrated Program Plan

IT Information Technology

PM Project Manager

PMO Project Management Office

QA Quality Assurance

SDLC Software Development Life Cycle

SIT System Integration Test

SLA Service Level Agreement

UAT User Acceptance Test

WSR Weekly Status Report

References

Black, Rex, and Dorothy, Graham. 2012. Foundations of Software Testing: ISTQB Certification.

Black, Rex. 2009. Managing the Testing Process.

