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Abstract 

With the world’s economy increasingly driven by software products, there has been a relentless pursuit of 
software quality with research in model development, agile methodologies, and quality measurement. 
However, attention to and attempting to improve the quality of the product or its development process 
alone may not be the most effective means to improve quality. There are many other parts of the 
enterprise and various other factors that influence quality, especially where user perception of quality 
(sometimes called “quality in use”) may be somewhat different than the product quality in a laboratory 
environment. Although requirements are often a cited reason for product quality problems, the quality of 
the sales process can also have a direct influence on requirements (i.e., custom software), and thereby 
influence quality. Customer service can also have great influence on the customer perception of the 
product’s quality. Considering the many standards for software product quality, quality frameworks, and 
development models, we propose a framework called the Enterprise Quality in Use as an alternative view 
—including other parts of the organization’s processes and outputs to improve quality not only in 
development phase, but also through each phase of the product lifecycle. 
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1 Introduction 

As software becomes more ubiquitous in our everyday lives, shorter development cycles put pressure on 
software product quality. Abundant research and standards development has occurred in the areas of 
software quality, software quality models, and software quality processes. The ISO 9000 family of 
standards was developed to assist organizations implement quality management systems [2]. Similarly, 
ISO 25010 [3] was developed for use in the field of software engineering — to help organizations identify 
relevant quality characteristics for establishing requirements, their criteria for satisfaction and the 
corresponding measures specifically addressing product quality and quality in use (QinU). 
 
Despite research focused on modeling and improving and organizations’ capability to build quality 
products (ISO 9000 and TQM [1]), and standards addressing the evaluation of software products’ quality 
(ISO 25010), a gap exists in the area of measuring and evaluating the end user’s view on quality as 
influenced by the organization. Development models such as Agile, Scrum, Spiral, V-model, and others 
begin at requirements and end with acceptance testing. Yet there are other parts of an organization and 
its processes, prior to requirements and after acceptance testing, that can significantly influence a 
customer’s perception of software quality. 
 
To address this shortfall, this paper proposes a novel quality framework for examining and improving 
software quality — the Enterprise Quality in Use (EQinU) framework. EQinU is a flexible framework that 
can be used in any organization based on concepts similar to the ISO 25010 where the outputs of one 
phase of quality influences the quality at the next phase.  

2 Related work on development and quality models 

This section discusses quality and development models to provide a general background and lay the 
foundation for EQinU which is based on similar concepts. 
 

2.1 ISO 25010 Quality Model 

ISO 25010[3] is the newest standard on system and product quality models. You can think of a model as 
a way to break down abstract concepts such as quality into something we can get our hands around. The 
ISO 25010 [3] standard’s views of quality can be summarized as follows: 
 
1) Product Quality (PQ) - Specified by a quality model (i.e. a set of eight characteristics–Functional 
Suitability, Performance Efficiency, Compatibility, Usability, Reliability, Security, Maintainability and 
Portability - and a set of sub-characteristics per each characteristic are prescribed), as shown in Figure 1. 

 
Figure 1. ISO 25010 product quality model [3] 
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The ISO product quality model defines quality characteristics such as Usability by using sub-
characteristics, i.e. Learnability. This is a common method where decomposing a characteristic into sub-
characteristics enables us to better understand the meaning of the characteristic.  
 
2) Quality in Use (QinU) - Specified by a quality model (i.e. a set of five characteristics–Effectiveness, 
Efficiency, Satisfaction, Freedom from risk and Context coverage) as shown in Figure 2. Note that each 
characteristic can be measured and evaluated by the extent to which specific user needs in an actual, 
specific context of use are met. 

 
Figure 2. ISO 25010 Quality in Use model [3] 

 
The ISO 25010 QinU model was developed to clearly differentiate product quality from the product’s 
effect in a real situation of use. A product could have ‘good’ quality at a product level, with very good 
Performance Efficiency, yet ‘in-use’, Satisfaction could be very poor.  As an example, suppose that a 
software application was designed to have the menus on the left rather than at the top. From a product 
quality point of view, it may fully satisfy user interface aesthetics criteria. This design may also satisfy 
Functional Completeness and Correctness criteria as well. However, from the user point of view, the 
unexpected menu location may negatively impact the Operability and Learnability of the software. The 
user perceives the application as having very low Efficiency.  
 
Quality models can be used to specify and evaluate software quality from different perspectives in the 
acquisition, requirements definition, development and evaluation of software. In practice, depending on 
the domain and the end users, when modeling quality we typically include a handful of characteristics and 
sub-characteristics that are most important to the evaluator. For instance, a person in a purchasing 
department may use the model to specify requirements for each characteristic that vendors must adhere 
to. For example, under Performance Efficiency (time behavior), all printing response times shall be less 
than 3 seconds for the first page. For a person evaluating software usability, they may use only one 
characteristic of the model and add more precision and depth only to the usability characteristic. For a 
stakeholder involved in software design and allocation of resources, they may put different weights on the 
different characteristics of quality depending on the domain of their application. Rather than saying 
‘quality is important’, quality models give us a means to better define our meaning. 
 
My previous research utilized the Product Quality/Quality in Use paradigm and developed a flexible 
framework called 2Q2U (Quality, QinU, actual Usability and User experience) designed for evaluation of 
Quality in Use [4]. For 2Q2U, we used the ISO 25010 premise that Product Quality (PQ) influences QinU. 
For instance, if help is contextually based, then this influences the user’s ability to learn the software 
when using it for a particular task. In this research, it was found that some characteristics, if improved at a 
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product level, definitely influenced performance at the user level. As shown in Figure 3 [5], if help 
completeness is improved, this will lead to improvement in the users’ ability to complete tasks. 
 

 
 

Figure 3. Relationships between Quality in Use (end user quality) and product quality attributes [5] 
 
Using Product Quality and QinU models, Figure 4 shows the ‘influences’ and ‘depends on’ relationships 
from ISO 25010 [3] where one phase influences quality at the next phase including process quality as 
well. 
 

 
Figure 4. Quality in the lifecycle 

 
The ISO 25010 standard and quality models are very general and most practitioners only use them as a 
guideline or starting point for what to consider when modeling and measuring quality. ISO 25010 model 
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usage states: “tailor the quality model giving the rationale for any changes.” What we can take away from 
this discussion on ISO 25010 are 3 main points: 

 One phase of quality can influence the next phase as shown in Figure 4. We all know from CMMI 
that great processes do not necessarily lead to great product, but they do have influence.  

 In practice, in previous research, we have been able to demonstrate a positive correlation made 
between product attributes and quality-in-use performance, thus showing the usefulness of this 
phase by phase ‘influence’ modeling concept. 

 Modeling quality using a hierarchical tree format makes it easier for us to conceptualize and 
understand what quality is, which is the first step toward improvement. 

 

2.2 ISO 9000 Quality Standard 

 The ISO 9000 [2] family of standards was developed to assist organizations with implementing and 
operating effective quality management systems. ISO 9000 is founded upon eight quality 
management principles. The principles most applicable to our quality modeling work include:  

 Process approach: Efficiently achieving desired results through activities and related resources that 
are managed as a process. 

 System approach to management: Identifying, understanding and managing interrelated processes 
as a system which contributes to the organization's effectiveness and efficiency in achieving its 
objectives. 

 Continual improvement: Continual improvement of the organization's overall performance should be a 
permanent objective of the organization. 

 
The ISO 9000 standard has a broad and general reach and can apply to all organizations striving to 
increase the quality of their products and services by applying these principles in their operations.   
However, it does not contain details on quality characteristics or using decomposition as a means to 
modeling and evaluating quality. What we can take away from ISO 9000 is: 
 

 Quality practices should be applied to the organization as a whole and not just one specific 
department. 

 
There are other models similar to ISO 9000, including Total Quality Management [1]. These 
methodologies and models are oriented towards general quality processes and organizational capabilities 
to develop quality products and services, but still lack quality modeling characteristics and sub-
characteristics for more specific understanding such as in ISO 25010. 
 

2.3 Development models 

There are many development models, but the objective and framework of the models are generally 
designed to solely model and measure software products or processes within the sphere of influence of 
the development organization. The V-model [7], for instance as shown in Figure 5, only shows 
requirements through acceptance testing. 
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Figure 5. Simplified V-model Development Paradigm 
 
The V-model and others including agile, waterfall, spiral, etc. all primarily focus on development and QA 
as the primary drivers of quality.  A few critical elements are lacking: 

 The end user’s perception of quality is influenced by many other factors outside of development 
and quality assurance. 

 Other parts of the organization also influence the quality of not only the product itself, but also the 
user’s perception of quality. 

3 EQinU Framework  

In developing the EQinU framework, we kept in mind an overriding philosophy not to just set up a 
framework for a good product, but for a quality product from the end user’s perspective. We also 
considered the main points of the previous discussion: 
 

 Quality should be modeled in a hierarchical manner for ease of understanding and therefore 
improvement. 

 Quality should incorporate the processes from other parts of the organization, not just 
development and quality assurance. 

 Quality from one phase in a product’s lifecycle development can influence the quality at the next 
phase. 

 
Given this, let’s examine a typical product lifecycle, as shown in Figure 6, where a company conceives of 
a product, then selling and producing it, and finally maintaining and servicing it. During the course of 
maintaining and servicing the product, the company runs into new opportunities for different or adapted 
products and the cycle begins again. 
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Figure 6. Typical Product Lifecycle 
 
Now, we take the concept from ISO 25010 where one phase of quality has influence on another 
downstream phase, and each phase’s quality is dependent on the output of one or more previous phases. 
In a general sense, quality of the outputs of phase N influences quality at phase N+1. By transforming 
Figure 6 from a cycle into a linear production line, this is conceptualized in Figure 7. 
  

 
 

Figure 7. Proposed EQinU modeling framework. 
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More specifically, we instantiate the framework with a more specific model oriented towards organizations 
producing software as shown in Figure 8. 
 

 
 

Figure 8. EQinU Software company general instantiation. 
 
 
This extends the V-model forwards and backwards in an entire software development organization, where 
sales processes can influence the quality of product requirements, and in turn, the product requirements 
processes can influence the quality of development. Further in the product cycle, customer service or 
technical support can give negative impressions to an existing customer by entering a service ticket either 
incompletely or incorrectly such that it takes longer than it should to resolve the issue, or the customer 
needs to call again for the same issue. It’s easy to see that the output of one process influences the 
performance and outputs of the next process down the line. 
 
Therefore, the concept of a Total Quality Lifecycle of a product, from inception to usage by the end user, 
should model not only the product quality, but also phases prior to the product, and after the product has 
been developed, as shown in Figure 9.  
 

 
Figure 9 Total Quality Lifecycle 

 
Each phase produces output, and that output could contain defects influencing later phases of the entire 
process that in the end, affect customer perceived quality. Below are a few examples: 
 

 Sales: Sales presents the product and its features and capabilities to prospective customers. If 

they present the product such that after the sale, customer expectations are not met (for example 
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delivery date or product capabilities), then this could contribute to a low perception of product 

quality. Misrepresentation in its various shapes and forms could be considered a sales defect. 

 Product Management (Requirements): Product management is responsible for many things and 

one of them is gathering from customers features to prioritize and include in the product roadmap. 

When features are specified and requirements are written and handed off to developers, if the 

developers do not understand the requirement fully, or must go back to ask the product analyst 

for clarity, this constitutes a requirements defect. Additionally requirements that are incomplete or 

not captured also represent a defect the same way as if you delivered a drawing of a table to a 

furniture maker that only had three legs. 

 Development: These are familiar defects that already have plenty of metrics and measurements. 

A developer writes code according to a requirement or user story, and there is an error in the 

code causing behavior to be different from the requirement. Derivatives of these defects could be 

defect regressions or defects that, when fixed, create other defects. 

 Quality Assurance: Testers also produce defects in their work by not clearly documenting defects 

so that developers can understand them or not thoroughly investigating an incident such that the 

defect cannot be reproduced. Note that this is a defect in testers’ work product, not the product 

itself. Ultimately, errors or defects in the output from QA can affect the quality of the end product. 

 Customer Service/Technical Support: Support and service representatives can create defects 

when they take calls from customers and give incorrect or incomplete information causing a 

customer either not to be able to solve their problem, or need to call back or both. 

4 Discussion and usage of the framework 

As experience with CMMI has shown, stringent processes and documentation do not guarantee a quality 
product. The EQinU framework is not intended to be a standard, or anything similar to CMMI where all the 
‘I’s need dotting and ‘T’s crossed with an auditor by your side. Rather, it is intended for use at a 
departmental level, to uncover elements that can influence quality, in particular in departments that 
traditionally were thought to have minimal influence on quality. 
 

4.1 Field example: sales and product management 

You may think that a sales call and marketing literature are unrelated to customer satisfaction, but we 
found in working with clients that quality problems can start way before development. Let’s look at an 
example as shown in Figure 10. 

 
Figure 10. Sales Defects Influence Product Management (Reqts.) 
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Let’s assume that the salesman, in a hurry to make the sale, makes a few mistakes: 
 

1. He forgets that the customer has a special requirement regarding Euro currency, for online 
conversion each day automatically converting the rate according to a certain website (Customer 
needs not documented completely). 

2. The customer tells him that they need to have the software delivered before the end of the 
summer. The salesman documents this as, “must deliver end of Q3” (Customer needs not 
documented clearly). 

 
As a result of these omissions and inaccuracies, the Product Management department has errors in their 
requirements. They pass these requirements to development. Using an agile development methodology, 
this might be caught if the customer is deeply involved, but there is also a distinct probability that it may 
not be discovered until the product is delivered. Delivering the product on September 30, or even October 
6, may be beyond what the customer thought of as ‘end of summer’ and there is no automatic conversion 
from Euros to USD. The customer is unsatisfied. 

4.2 Field example: Customer service 

If we look at defects in an organization, we can find them in many places other than those in development 
and QA. Let’s examine an example in customer service where we were able to listen to sample calls from 
several customer service representatives and investigate the service tickets that resulted: 
 

1. The customer called in because they had a problem posting changes from the client application 
into the cloud. After posting the changes, the system did not provide feedback that the changes 
were posted. They called into customer service to report the problem. 

2. Because many people were having the same problem, there were heavy call loads that day.  The 
heavy load caused many service representatives to take longer breaks, which contributed to both 
long wait times and exceptionally long call times. We noticed that sometimes, the representative 
would say “can you hold please while I investigate this error”. But in fact, they were just resting, 
thereby extending call lengths. 

3. When the customer service representative entered the service ticket, they forgot to ask what 
environment the customer was using (Windows, Apple, etc.) so the ticket was incomplete. 

 
All of the situations above actually represent defects in other parts of the organization’s work products 
that are not what we traditionally think of as software defects, but which can have a significant influence 
on the product quality and the end user’s perception of quality 

5 Conclusions and future work 

In this paper, we have proposed a framework for modeling Enterprise Software Quality in Use (EQinU). In 
doing so, we have provided reasoning for extending the ISO 25010 quality modeling premise that phases 
in a product’s development influence later phases and quality of later phases depends on earlier phases. 
EQinU extends this premise in the organization — into customer service and sales. As such, quality can 
be influenced, by areas of the organization other than software development and QA.  
 
To illustrate the applicability of the proposed approach, examples from real clients in the field were 
presented to demonstrate the need to view software quality from a different mindset. It is no longer solely 
the job of development and quality assurance, but the entire organization, including sales and technical 
support to produce high quality software. 
 
Ongoing research is focused on further utilizing the EQinU framework to model and understand the 
relationships among processes in an organization, their influence on product quality, and ultimately the 
end user’s perception of software quality using measurement and metrics. In [6], we used survey 
methods to directly correlate quality metrics to end user satisfaction and we hope to extend that same 
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principle in this line of research. In the end, our goal is to discover that improvements or decline in 
performance in a characteristic of one organizational department influences the performance of another. 
Example correlations could include:  
 

 Technical support call length and defects resolved. 

 Time to fix a defect and number of calls to technical support.  

 Customer needs documented accurately and completely by sales and product management’s 
feature requirements.  

 
The above are just examples of how one phase in the product lifecycle can have an influence on the end 
user’s view of quality and that one weak point in an earlier phase can ultimately have impact on customer 
satisfaction and the end user’s perception of quality. With this alternative paradigm in viewing quality, the 
amount of low hanging fruit may surprise you.  
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