
Software Technology Readiness for the
Smart Grid

Cristina Tugurlan, Harold Kirkham, David Chassin

Pacific Northwest National Laboratory
Advanced Power and Energy Systems

Richland, WA

cristina.tugurlan@pnnl.gov, harold.kirkham@pnnl.gov, david.chassin@pnnl.gov

Abstract

Budget and schedule overruns in product development due to the use of immature technologies
constitute an important matter for program managers. Moreover, unexpected lack of technology maturity
is also a problem for buyers. Both managers and buyers would benefit from an unbiased measure of
technology maturity. This paper presents the use of a software maturity metric called Technology
Readiness Level (TRL), in the milieu of the smart grid. (The smart grid adds increasing levels of
communication and control to the electricity grid.) For most of the time they have been in existence, power
utilities have been protected monopolies, guaranteed a return on investment on anything they could
justify adding to the rate base. Such a situation did not encourage innovation, and instead led to
widespread risk-avoidance behavior in many utilities. The situation changed at the end of the last century,
with a series of regulatory measures, beginning with the Public Utility Regulatory Policy Act of 1978.
However, some bad experiences have actually served to strengthen the resistance to innovation by some
utilities. Some aspects of the smart grid, such as the addition of computer-based control to the power
system, face an uphill battle. Consequently, the addition of TRLs to the decision-making process for
smart grid power-system projects might lead to an environment of more confident adoption.

Biography

Cristina Tugurlan joined Pacific Northwest National Laboratory as a software test engineer in August 2010.
Before joining PNNL, she held a software engineer position at IBM, OR. She is responsible for the software
testing and validation of projects modeling wind generation integration, power system operation and smart
grid. She has a Ph.D. in Applied Mathematics from Louisiana State University, Baton Rouge, LA.

Harold Kirkham received the PhD degree from Drexel University, Philadelphia, PA, in 1973 and joined
American Electric Power, and was responsible for the instrumentation at the Ultra-High Voltage research
station. He was at the Jet Propulsion Laboratory (JPL), Pasadena, CA, from 1979 until 2009, in a variety of
positions. In 2009 he joined the Pacific Northwest National Laboratory, where he is now engaged in
research on power systems. His research interests include both power and measurements.

David Chassin has been at Pacific Northwest National Laboratory for 19 years and has more than 25
years of experience in the research and development of computer applications software for the
architecture, engineering and construction industry. His research focuses on non-linear system dynamics,
high-performance simulation and modeling of energy systems, controls, and diagnostics. He is the
principle investigator and project manager of DOE's SmartGrid simulation environment, called GridLAB-D
and was the architect of the Olympic Peninsula SmartGrid Demonstration's real-time pricing system.

mailto:cristina.tugurlan@pnnl.gov
mailto:harold.kirkham@pnnl.gov
mailto:david.chassin@pnnl.gov

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page 2
Copies may not be made or distributed for commercial use

1. Overview of Paper

The paper begins by explaining how regulation of the power utilities led to a lag in the implementation of
distributed automatic control. Re-regulation has changed the situation. The paper points out the need for
assurance that any control now being introduced is ready for application.

The second section of the paper describes how Technology Readiness Levels (TRLs) were introduced
and used by different agencies and institutions in their technology development programs.

The third part of the paper develops a variant of the TRL system that is relevant to the smart grid, and in
particular to the software that must be employed. The example of GridLAB-D is presented. The
relationship between TRL and testing is discussed.

Finally, it is argued that the TRL sequence leaves a trail of evidence that can be used to overcome a well-
established risk aversion. The paper should thus be of value to implementers of the smart grid, as a way
to become more confident of the software status.

2. The Smart Grid

In economics, a “natural” monopoly can be defined as an “industry in which multiform production is more
costly than production by a monopoly” (Baumol, 1977). The situation can arise because the fixed cost of
the capital goods is so high that an economy of scale can be arranged so that it is not profitable for a
smaller second firm to enter and compete. To prevent utilities from exploiting their monopolies with high
prices, they have typically been regulated by government. Utilities such as water, electricity, and natural
gas used to be protected monopolies, guaranteed a certain rate of return on their investment. As a result
they developed entrenched risk-avoidance behavior, and resistance to innovation. However, the notion
that the power companies were a natural monopoly began to be questioned in the 1970s (The Economist,
1998). The idea that there were limitless economies of scale was thought no longer valid, and the point
was made law by the Public Utilities Regulatory Policy Act of 1978, that required power companies to buy
energy from qualifying competing facilities.

Nowadays, electricity has undergone a period of deregulation, and the generators of electric power can now
compete. But the infrastructure, i.e. the wires that carry the electricity, usually remains a natural monopoly,
and the various companies send their electricity through the same grid. To accommodate a number of new
kinds of generation, a smart grid is being created. The smart grid essentially takes an electricity grid and
intelligently integrates communications and computer technology, so that (for example) suppliers can deliver
electricity to consumers in a wider range of conditions, while also accommodating wind and solar power
sources.

Thus, utilities in the power sector deal with a shift towards smart grid and energy efficiency. Increasingly,
smart grid projects include software-based efforts. Compared to hardware endeavors, a major advantage
of this type of projects is a shorter time to market.

Just as with hardware, there is a real need for a metric to measure the technology maturity and
integration level of the software in the smart grid power system projects. A scale called Technology
Readiness Levels (TRLs), adapted from other fields, is proposed. Because of the documentation
required, the metric can be used to increase the comfort-level of utilities as they adopt the new directions,
and take advantage of commercialization.

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page 3
Copies may not be made or distributed for commercial use

2. Technology Readiness Level and Software Quality

In any project there are multiple interdependent constraints that influence the project success. Three
crucial ones are scope, time, and budget. However, many projects somehow get started without sufficient
previous planning, and the work-load seems to increase unexpectedly as the projects progress.

According to Donna Shirley (2010), manager of the Mars program at the Jet Propulsion Laboratory, the
business of TRLs got started at National Aeronautics and Space Administration (NASA) because of a
“guy named Werner Gruel, who was a NASA cost analyst.” Gruel “had this great curve that showed that if
you spent less than 5 percent of the project cost before you made a commitment to the cost, that it would
overrun. If you spent 10 percent of the cost before, it wouldn't overrun.” Figure 1 is an updated version of
Gruel’s graph, showing the overruns on some actual space missions.

Figure 1: Cost overrun as a function of pre-design spending

What was going on, according to Ms. Shirley, was that at the start of a project, there was a need for a
cost estimate, so the engineers did a quick-and-dirty design that they called a “point design.” A cost
estimate based on the point design was then put into the rather long NASA budget cycle.

However, the chances were good that the point design did not take everything into account. After the
funding has been obtained, and work had started, it was gradually realized that there was going to be a
cost overrun. At this point, the choices were between an overrun and a descope. Nobody wants to
descope, so the result was usually that there was a cost overrun, and the engineers got the blame. What
NASA needed was a way to improve their understanding of what was involved. This is where the
Technology Readiness Levels came into their own.

TRLs had been under development at NASA since the 1970s, and the curve generated by Werner Gruel
provided the ammunition to show they could be useful. The original TRL concept came from Stan Sadin
at NASA, in 1974, with seven levels identified (Sadin 1974). The method was developed sporadically after
that. The current nine-level version of TRLs was written down in a white paper by John Mankins at NASA
in 1995, and seems to have become more or less fixed. Since then, the European Space Agency has
adopted something very similar. So has the US military. (The US Air Force has even created a
spreadsheet to help determine the TRL of technology. So has the Department of Homeland Security.)

The TRL definitions have some variation in interpretation to suit different organization’s needs, but their
overall scales match NASA's traditional scale quite closely, focusing on how ready a

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page 4
Copies may not be made or distributed for commercial use

technology/integration/system is for its application in the intended environment. In Table 1, Weiping and
colleagues (Tan et al. 2009) compare the TRLs used by the leading government agencies in their
technology development programs. The agencies tailored the TRL process specifically to their organizations
in order to produce operational systems on schedule and within budget. The NASA TRLs are the ones listed
by Mankins (Mankins 1995), and the Department of Defense (DoD) ones are from the DoD Deskbook (DoD
2005). The Department of Energy (DOE) TRLs here apply only to the nuclear fuel side of DOE (Carmack
and Pasamehmetoglu 2008). NATO TRLs are given in a 2006 document (NATO, 2006).

Table 1: TRL definitions used by the leading government agencies

TRL National Aeronautics
and Space
Administration (NASA)

Department of
Defense (DOD)

Department of
Energy (DoE)

North Atlantic Treaty
Organization (NATO)

0 N/A N/A N/A Basic research with future
military capability in mind

1 Basic principles observed
and reported

Basic principles
observed and
reported

Initial concept
verified against first
principles and
evaluation criteria
defined

Basic principles observed
and reported in context of
a military capability
shortfall

2 Technology concept
and/or application
formulated

Technology concept
and/or application
formulated

Technical options
evaluated and
parametric ranges
are defined for
design

Technology concept
and/or application
formulated

3 Analytical and
experimental critical
function and/or
characteristic proof-of-
concept

Analytical and
experimental critical
function and/or
characteristic proof
of concept

Success criteria and
technical
specifications are
defined as a range

Analytical and
experimental critical
function and/or
characteristic proof of
concept

4 Component and/or
breadboard validation in
laboratory environment

Component and/or
breadboard validation
in laboratory
environment

Fuel design
parameters and
features defined

Component and/or
breadboard validation in
laboratory/field (eg
ocean) environment

5 Component and/or
breadboard validation in
relevant environment

Component and/or
breadboard validation
in relevant
environment

Process parameters
defined

Component and/or
breadboard validation in a
relevant (operating)
environment

6 System/subsystem model
or prototype demonstration
in a relevant environment
(ground or space)

System/subsystem
model or prototype
demonstration in a
relevant environment

Fuel safety basis
established

System/subsystem model
or prototype
demonstration in a
realistic (operating)
environment or context

7 System prototype
demonstration in a space
environment

System prototype
demonstration in an
operational
environment

All quantification
steps completed and
fuel is licensed

System prototype
demonstration in an
operational environment
or context (eg exercise)

8 Actual system completed
and “flight qualified” through
test and demonstration
(ground or space)

Actual system
completed and “flight
qualified” through test
and demonstration

Reactor full-core
conversion to new
licensed fuel
completed

Actual system completed
and qualified through test
and demonstration

9 Actual system “flight
proven” through
successful mission
operations

Actual system “flight
proven” through
successful mission
operations

Routine operations
with licensed fuel
established

Actual system
operationally proven
through successful
mission operations

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page 5
Copies may not be made or distributed for commercial use

When first invented or conceptualized, most new technologies are not suitable for immediate application.
They must go through a number of stages including experimentation, refinement, and extensive testing, in
order to be proven ready for system integration and/or commercialization. As the TRL number gets
higher, the range of applications gets narrower. At very low TRL numbers, there could be many
applications for a particular technology. TRL 2 is not reached until there is one application in mind. As the
TRL number gets higher, the cost of moving from one level to the next gets higher. This cost increase is
brought about by the need to involve more specialized workers, and the need for keeping track of things
with more documentation.

Figure 2, adapted from Nolte’s “whale-shaped” chart (Nolte 2008), shows how the usefulness of a
particular technology evolves in time, and how the technology development phases relate to the TRLs. It is
clear that most of the TRLs occur early in the technology life cycle, where:

 TRL 1 to TRL 3 address general conceptual science matters,
o a step up from TRL1 to TRL2 shifts ideas from pure to applied research,

 TRL 4 to TRL 5 cover the transition from scientific research to engineering and system development,
o TRL 4 is the first step in determining whether the individual components will work together as

a system (DOE 2009),

 TRL 6 to TRL 9 focus on engineering matters,
o TRL 6 begins true engineering development of the technology as an operational system,
o TRL 9 represents the final stage of the technology, when the technology is fully operational

and its maturity is reached.

Figure 2: Technology Life Cycle and Technology Readiness Levels

3. Software Technology Readiness Level in Smart Grid

The TRL metrics are applicable to any type of technology, including hardware and software products.
Measuring the readiness of a software product reflects some combination of quality characteristics
estimated at a given moment of time. However, it is impossible to produce systems of any size which do
not change as they develop, so the TRL number is a transient thing. Both the hardware and software
environments surrounding a software product change and therefore the software products are
continuously changing and aging (Eick et al. 2001).

Once software is put into use, new requirements emerge and existing requirements change, for example
as the business running the software changes. Parts of the software may have to be modified to support
architectural changes or to correct errors that are found in operation, improve its performance, or other
non-functional characteristics. Consequently, even after delivery, software systems evolve in response to
demands for change.

http://experiment.co.tv/

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page 6
Copies may not be made or distributed for commercial use

Building the smart grid requires a lot of computer and software subsystems. Utilities begin to address the
strategy, management, and regulatory issues involved in transitioning to a smart grid. Consequently, the
utilities might benefit from using TRLs in their technology acquisition processes.

For hardware, implementing TRLs for the smart grid is not a difficult thing to visualize. The manufacturer
of a widget intended for the smart grid can assemble convincing evidence during the design and
development process that the widget is at a level of development that it would not endanger the power
system if it were put into the field. It has to be admitted that, in the past, due to the lack of this kind of
documentation, some technologies have been applied to the electric power system before they were
really ready. For example, back in the 1960s, some early applications of solid state technology to power
system relaying were less than adequate. Had the devices been subject to the rigor of an appropriate
qualification program, that experience could have been avoided. However, because the utilities did have
this bad experience, future technology diffusion has to make the effort to be convincing. Hasty adoption of
unready technology can sometimes lead to delays in the adoption of ready technology.

For software, the case of an application developed at Pacific Northwest National Laboratory (PNNL) is
considered. To assure the correct functionality of some products used in the distribution part of the smart
grid, a computer model simulator, called GridLAB-D, was developed at the U.S. Department of Energy's
Pacific Northwest National Laboratory. The sophisticated computer program provides a detailed,
simultaneous simulation of the electric grid, including power flow, end-use loads, and market functions. In
other words, it models both technical and non-technical interactions within a power grid. The model allows
users to evaluate new technologies and operational strategies, to craft and refine the characteristics of
these technologies and strategies, and to predict the results of deploying them. GridLAB-D was designed
as an open source system having contributors all over the world. Modeling in GridLAB-D uses specific
classes of objects, and modules, classified by functionality.

The GridLAB-D project team began using TRLs in January 2011 to get a better understanding of technology
status, manage risks and make decisions in funding, development and deployment. Moreover, TRLs assist
with assessing the readiness of modules and classes for analysis projects and studies. The software TRLs,
tailored for the GridLAB-D project, are detailed in Table 2. To assist with an effective and consistent use
of TRLs in Table 2, a methodology of software readiness assessment is designed. Unfortunately, the
procedural steps and the evaluation of the obtained results are not yet in final form, since the design
process is constantly optimized and improved.

Table 2: Software Technology Readiness Level

TRL Definition Description

1. Basic
principles
described
(mathematical
formulation)

Lowest level of software readiness. Basic concept begins to be translated into
applied research and development by providing a detailed mathematical
formulation. Examples might include a concept that can be implemented in
software, or analytic studies of an algorithm’s basic properties.

2. Application
concept
formulated
(algorithm)

Development has begun. Basic individual algorithms or functions are prototyped
and documented. Results are speculative and there is no proof or detailed
analysis to support assumptions or expectations. Examples are still limited to
paper studies.

3. Analytical
proof of
concept
(prototype)

Active research, development and documentation are initiated. Depending on the
size and complexity of the implementation, basic components of the integrated
critical system have been designed, built and partially tested. Analytic studies to
produce code that validates analytical predictions of separate software elements of
the technology are done. Examples include implementation of software components
that are not yet integrated or thoroughly tested, but satisfy an operational need.
Algorithms are run and tested on a surrogate processor in a lab environment.

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page 7
Copies may not be made or distributed for commercial use

The assessment of software readiness level required individual estimations and evaluations (a subject
matter expert assesses the TRL of the technology). This is followed by group estimations in meeting or
conference format for discussing the technology maturity, and a combination of the above when a

4. Standalone
component
validated
(earliest
version)

Basic software components are integrated to establish that they will work
together. They are relatively primitive with regard to efficiency and reliability
compared to the eventual system. System software architecture development
initiated to include interoperability, reliability, maintainability, extensibility,
scalability, and cyber-security issues. Software integrated with simulated
current/legacy elements as appropriate. Verification and validation process is
partially completed, or completed for only a subset of the functionality in a
representative simulated laboratory environment. Documentation includes design
documents and a start of a user manual.

5. Integrated
component
validated
(ALPHA
version)

Reliability of software ensemble increases significantly. All software components are
integrated with reasonably realistic supporting elements so that the software can be
tested and completely validated in a simulated environment. Examples include “high
fidelity” laboratory integration of software components. System software architecture
is established. Algorithms run on a processor(s) with characteristics expected in the
operational environment. Software releases are “Alpha” versions and configuration
version control is initiated. Full documentation according to the applicable software
standards, test plans and application examples, including all use cases, cyber-
security and error handling should be provided.

6. System -
subsystem
demonstrated
(BETA version)

Represents a step up from lab scale to engineering scale. Representative model
(BETA version), which is well beyond that of TRL 5, is tested in a relevant
environment. Examples include testing a prototype in a live/virtual experiment or
in a simulated operational environment. Algorithms running on the simulated
operational environment are integrated with actual external entities. Configuration
control and quality assurance processes are fully deployed. Verification and
Validation process is completed for the intended scope (including robustness)
and the system is validated in an end-to-end fully representative operational
environment (including real target).

7. Prototype
demonstrated
(product
RELEASE)

Requires the demonstration of an actual system prototype in an operational
environment. Algorithms running on processor of the operational environment are
integrated with actual external entities. Software support structure is in place.
Software releases are in distinct versions. Functionality and performance are not
significantly degraded by frequency and severity of software deficiency reports.
Verification and validation is completed, validity of solution is confirmed within
intended application. Requirements specification are validated by the users.
Engineering support and maintenance organization, including helpdesk, are in place.

8. System
“analysis
qualified”
(general
product)

Software has been demonstrated to work in its final form and under expected
conditions. In most cases, this TRL represents the end of system development.
Examples include test and evaluation of the software in its intended system to
determine if it meets design specifications. Software releases are production versions
and configuration controlled, in a secure environment. Software deficiencies are
rapidly resolved through support infrastructure. Full documentation including
specifications, design definition and justification, verification and validation
(qualification file), users and installation manuals, training and education materials,
software problem reports and non-compliances should be provided.

9. System proven
(live product)

Represents actual application of the software in its final form and under designed
conditions, such as those encountered in operational test and evaluation. In
almost all cases, this is the end of the last “bug fixing” aspects of the system
development. Examples include using the system under operational design
conditions. Software releases are production versions and configuration
controlled. Frequency and severity of software deficiencies are at a minimum.
Sustaining engineering, including maintenance and upgrades, updates to
documentation and qualification files are in place.

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page 8
Copies may not be made or distributed for commercial use

consensus of a single estimate is sought. For each GridLAB-D class, the frequency distribution of the
individual estimations and evaluation is constructed and incorporated in the mean value calculation. The
method of determining TRL of a class is difficult to be extended to modules because classes can often
interact in ways that are not measured by the class TRL. The TRL of each GridLAB-D module is
calculated as the lowest TRL found in the classes used by the model. Since the interaction between
classes is not quantized in the TRL grading, the actual TRL of any model may be lower than the TRL
computed by GridLAB-D. For illustration purposes, Table 3 presents the TRLs assessment for two
GridLAB_D models - climate and residential. By choosing what classes are included in a specific model,
the user has the possibility to increase or decrease the TRL of that model, i.e. a residential home having
house_e and water heater as components has a modul TRL of 7, while house_e .by itself has a module
TRL of 9.

Table 3: GridLAB-D TRL assessment

Module
Classes

Module TRL
Name TRL

climate weather 9 9

residential

clothes washer 2

2

dishwasher 2

dryer 2

evcharger 4

freezer 5

house_a 6

house_e 9

lights 8

microwave 5

occupant load 8

plug load 8

range 5

refrigerator 5

water heater 7

zipload 9

All of the above proved that TRLs can result in more reporting, paperwork and review time. It takes time
for participants in GridLAB-D work to adjust to using TRLs and for the TRL process to have an effect
project-wide. Understanding and communicating the detail of the TRL assessment is vital to avoid
unnecessary concerns. For example, some elements may have a low TRL but a clear development path
and therefore their maturation is a low risk.

Systems engineering processes are not addressed in the lower TRLs, which can result in difficulties
transitioning technologies to higher TRLs. There are situations when moving a TRL up on the scale is a
matter of providing resources to rapidly increase the TRL or seek an alternative solution (technology) with
a higher TRL.

It may be noted that the TRL scale of Table 2 does not exactly parallel the TRL values in Table 1. For
example, in the (hardware-based) Table 1, TRL 4 and 5 are no more than breadboard systems, and it is
sometimes said that one can reach TRL 6 in a good Hobby Shop. (Mind you, TRL 5 at NASA requires
that a failure modes and effects analysis (FMEA) is performed, not something usually associated with a
Hobby Shop.) In contrast, TRL 5 in Table 2 talks about “releasing” software, a process that surely
involves leaving the laboratory or workshop environment. This difference in process results from the
difference in testing needs between hardware and software.

Based on the TRL, stating how successful each subsystem of the hierarchy will be requires that the TRLs
be linked to test plans and trials. This linkage provides a clear statement on the TRL achievement at each
stage of the project. The TRL definitions provide a convenient means to further understand the

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page 9
Copies may not be made or distributed for commercial use

relationship between the scale of testing, fidelity of testing system, and testing environment and the TRL
(DOE 2009). As it can be seen in Table 4, the scale requires that for a TRL 6 testing should be completed
at an engineering or pilot scale, with a testing system fidelity that is similar to the actual application. TRL 6
represents the point when the software is delivered to customers for beta testing. Therefore, the
verification and validation process should be completed for the intended scope and the system should be
validated in a simulated environment with some external features. The TRL scale used in Table 2
requires that testing of a prototypical design in a relevant environment be completed prior to incorporation
of the technology into the final design of the facility.

The Technology Readiness Level is, of course, not just monitoring for the sake of monitoring. It is a useful
part of the management process. TRL levels were originally intended as a way to assess the amount of
effort needed to get something qualified for space use. Implicit in that statement is the fact that if a widget
was not at a good solid TRL 6 or even a TRL 7, it was not going into space. Whether for manned-space
or not, these levels were important. In adapting the idea to software, it is not unusual to release software
to the users in a somewhat unprepared state. What this means is that at a TRL that would just about get
a widget into space, the software is released to Beta test. Therefore, the important TRL number is really
TRL 6. What is needed up to TRL 6 controls whether the software leaves the workshop. This is the
message to take away from the TRL numbers in Table 2.

Table 4: Relationship of Testing Recommendations to the TRLs

TRL
Level

Scale of testing
1

System
Fidelity

2

Environment
3

Numbered notes
1. Scale of testing

 Full Scale matches final application.

 1/10 Full Scale < Engineering/Pilot
Scale < Full Scale (Typical)

 Lab Scale < 1/10 Full Scale (Typical)
2. System Fidelity

 Identical – matches final application in
all respects

 Similar – matches final application in
almost all respects

 Pieces – matches a piece or pieces of
the final application

 Paper – exists on paper
3. Environment

 Operational (full range) – full range
operational capacity

 Operational (limited range) – limited
range operational capacity

 Relevant – simulated environment plus
a limited range of external features

 Simulated – restrictive range of
simulation

1 Paper

2 Paper

3 Lab Pieces Simulated

4 Lab Pieces Simulated

5 Lab/Bench Similar Simulated

6
Engineering/Pilot
Scale

Similar Relevant

7 Full Similar
Operational
(limited range)

8 Full Identical
Operational (full
range)

9 Full Identical
Operational (full
range)

4. Conclusions

Properly applied in system engineering management, Technology Readiness Levels are of value in
understanding technology status, managing risks and making decisions in funding. For the development
and deployment of software products they assist the system engineer and the manager. The TRLs
reduce the amount of subjectivity about project status, and therefore, planning and execution can be
managed better.

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page 10
Copies may not be made or distributed for commercial use

TRLs can serve a number of useful purposes in the electric generation and delivery world. Overall, the
transitioning of technology from laboratory to application becomes a carefully managed process. For the
utility world and the hardware headed for the smart grid, the TRL sequence leaves a trail of evidence that
can be used to overcome a well-established risk aversion.

The same observation is necessarily true for software. However, for software there are a few additional
difficulties in applying the standard TRL method. For example, inevitable software “decay”, architecture
transformations and the need for software maintenance after release, increase the volume of
documentation involved. Nevertheless, the documentation serves a purpose, and it can be argued that it
justifies its existence.

The proposed software TRLs described in this paper have been applied to an actual software system
development, i.e. GridLAB-D. While the application of TRLs to the software is presently in its relatively
early stages, it strengthens the smart grid software capabilities even further by pinpointing and even
preventing system malfunction before release to the customers.

__
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page 11
Copies may not be made or distributed for commercial use

References

DOD 2005 May. Technology Readiness Assessment (TRA) Deskbook,

DOE G 413.3-4 2009, October. US DOE Technology Readiness Assessment Guide,

The Economist 1998, March. Power to the people: Deregulation and new technology are working hand in
hand to transform the global electricity-supply industry,

Eick, S., Graves, T., Karr, A., Marron, J., and Mockus,A. 2001. Does Code Decay? Assessing the
Evidence from Change Management Data. IEEE Transactions on Software Engineering, Vol. 27, No. 1,

Mankins, John C. 1995, April. Technology Readiness Levels: A White Paper. NASA, Office of Space
Access and Technology, Advanced Concepts Office,

NATO 2006. North Atlantic Treaty Organization (NATO) Technology Readiness Levels.
http://www.nurc.nato.int/research/trl.htm,

Nolte, William L. 2008. Did I Ever Tell You about the Whale? or Measuring Technology Maturity.
Information Age Publishing,
,

Sadin, Stan 1974. Origin of TRL. http://en.wikipedia.org/wiki/Technology_readiness_level
Shirley, Donna 2010. www.jsc.nasa.gov/history/oral_histories/NASA_HQ/.../DLS_7-17-01.pdf,

Tan, Weiping, Ramirez-Marquez, Jose, and Sauser, Brian 2009. A Probabilistic Approach to System
Maturity Assessment. Wiley Online Library, DOI 10.1002/sys.20179.

http://www.nurc.nato.int/research/trl.htm
http://en.wikipedia.org/wiki/Technology_readiness_level
http://www.jsc.nasa.gov/history/oral_histories/NASA_HQ/.../DLS_7-17-01.pdf

