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Abstract 

Budget and schedule overruns in product development due to the use of immature technologies 
constitute an important matter for program managers. Moreover, unexpected lack of technology maturity 
is also a problem for buyers. Both managers and buyers would benefit from an unbiased measure of 
technology maturity. This paper presents the use of a software maturity metric called Technology 
Readiness Level (TRL), in the milieu of the smart grid. (The smart grid adds increasing levels of 
communication and control to the electricity grid.) For most of the time they have been in existence, power 
utilities have been protected monopolies, guaranteed a return on investment on anything they could 
justify adding to the rate base. Such a situation did not encourage innovation, and instead led to 
widespread risk-avoidance behavior in many utilities. The situation changed at the end of the last century, 
with a series of regulatory measures, beginning with the Public Utility Regulatory Policy Act of 1978. 
However, some bad experiences have actually served to strengthen the resistance to innovation by some 
utilities. Some aspects of the smart grid, such as the addition of computer-based control to the power 
system, face an uphill battle. Consequently, the addition of TRLs to the decision-making process for 
smart grid power-system projects might lead to an environment of more confident adoption. 

Biography 

Cristina Tugurlan joined Pacific Northwest National Laboratory as a software test engineer in August 2010. 
Before joining PNNL, she held a software engineer position at IBM, OR. She is responsible for the software 
testing and validation of projects modeling wind generation integration, power system operation and smart 
grid. She has a Ph.D. in Applied Mathematics from Louisiana State University, Baton Rouge, LA. 
 
Harold Kirkham received the PhD degree from Drexel University, Philadelphia, PA, in 1973 and joined 
American Electric Power, and was responsible for the instrumentation at the Ultra-High Voltage research 
station. He was at the Jet Propulsion Laboratory (JPL), Pasadena, CA, from 1979 until 2009, in a variety of 
positions. In 2009 he joined the Pacific Northwest National Laboratory, where he is now engaged in 
research on power systems. His research interests include both power and measurements. 
 
David Chassin has been at Pacific Northwest National Laboratory for 19 years and has more than 25 
years of experience in the research and development of computer applications software for the 
architecture, engineering and construction industry. His research focuses on non-linear system dynamics, 
high-performance simulation and modeling of energy systems, controls, and diagnostics. He is the 
principle investigator and project manager of DOE's SmartGrid simulation environment, called GridLAB-D 
and was the architect of the Olympic Peninsula SmartGrid Demonstration's real-time pricing system. 

mailto:cristina.tugurlan@pnnl.gov
mailto:harold.kirkham@pnnl.gov
mailto:david.chassin@pnnl.gov


____________________________________________________________________________________ 
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page 2 
Copies may not be made or distributed for commercial use  

1. Overview of Paper 

The paper begins by explaining how regulation of the power utilities led to a lag in the implementation of 
distributed automatic control. Re-regulation has changed the situation. The paper points out the need for 
assurance that any control now being introduced is ready for application. 
 
The second section of the paper describes how Technology Readiness Levels (TRLs) were introduced 
and used by different agencies and institutions in their technology development programs. 
 
The third part of the paper develops a variant of the TRL system that is relevant to the smart grid, and in 
particular to the software that must be employed. The example of GridLAB-D is presented. The 
relationship between TRL and testing is discussed. 
 
Finally, it is argued that the TRL sequence leaves a trail of evidence that can be used to overcome a well-
established risk aversion. The paper should thus be of value to implementers of the smart grid, as a way 
to become more confident of the software status. 
 

2. The Smart Grid 

In economics, a “natural” monopoly can be defined as an “industry in which multiform production is more 
costly than production by a monopoly” (Baumol, 1977). The situation can arise because the fixed cost of 
the capital goods is so high that an economy of scale can be arranged so that it is not profitable for a 
smaller second firm to enter and compete. To prevent utilities from exploiting their monopolies with high 
prices, they have typically been regulated by government. Utilities such as water, electricity, and natural 
gas used to be protected monopolies, guaranteed a certain rate of return on their investment. As a result 
they developed entrenched risk-avoidance behavior, and resistance to innovation. However, the notion 
that the power companies were a natural monopoly began to be questioned in the 1970s (The Economist, 
1998). The idea that there were limitless economies of scale was thought no longer valid, and the point 
was made law by the Public Utilities Regulatory Policy Act of 1978, that required power companies to buy 
energy from qualifying competing facilities.  

 
Nowadays, electricity has undergone a period of deregulation, and the generators of electric power can now 
compete. But the infrastructure, i.e. the wires that carry the electricity, usually remains a natural monopoly, 
and the various companies send their electricity through the same grid. To accommodate a number of new 
kinds of generation, a smart grid is being created. The smart grid essentially takes an electricity grid and 
intelligently integrates communications and computer technology, so that (for example) suppliers can deliver 
electricity to consumers in a wider range of conditions, while also accommodating wind and solar power 
sources. 

 
Thus, utilities in the power sector deal with a shift towards smart grid and energy efficiency. Increasingly, 
smart grid projects include software-based efforts. Compared to hardware endeavors, a major advantage 
of this type of projects is a shorter time to market.  
 
Just as with hardware, there is a real need for a metric to measure the technology maturity and 
integration level of the software in the smart grid power system projects. A scale called Technology 
Readiness Levels (TRLs), adapted from other fields, is proposed. Because of the documentation 
required, the metric can be used to increase the comfort-level of utilities as they adopt the new directions, 
and take advantage of commercialization. 
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2. Technology Readiness Level and Software Quality  

In any project there are multiple interdependent constraints that influence the project success. Three 
crucial ones are scope, time, and budget. However, many projects somehow get started without sufficient 
previous planning, and the work-load seems to increase unexpectedly as the projects progress.  

 
According to Donna Shirley (2010), manager of the Mars program at the Jet Propulsion Laboratory, the 
business of TRLs got started at National Aeronautics and Space Administration (NASA) because of a 
“guy named Werner Gruel, who was a NASA cost analyst.” Gruel “had this great curve that showed that if 
you spent less than 5 percent of the project cost before you made a commitment to the cost, that it would 
overrun. If you spent 10 percent of the cost before, it wouldn't overrun.” Figure 1 is an updated version of 
Gruel’s graph, showing the overruns on some actual space missions. 

 

Figure 1: Cost overrun as a function of pre-design spending 

What was going on, according to Ms. Shirley, was that at the start of a project, there was a need for a 
cost estimate, so the engineers did a quick-and-dirty design that they called a “point design.” A cost 
estimate based on the point design was then put into the rather long NASA budget cycle. 

 
However, the chances were good that the point design did not take everything into account. After the 
funding has been obtained, and work had started, it was gradually realized that there was going to be a 
cost overrun. At this point, the choices were between an overrun and a descope. Nobody wants to 
descope, so the result was usually that there was a cost overrun, and the engineers got the blame. What 
NASA needed was a way to improve their understanding of what was involved. This is where the 
Technology Readiness Levels came into their own. 

 
TRLs had been under development at NASA since the 1970s, and the curve generated by Werner Gruel 
provided the ammunition to show they could be useful. The original TRL concept came from Stan Sadin 
at NASA, in 1974, with seven levels identified (Sadin 1974). The method was developed sporadically after 
that. The current nine-level version of TRLs was written down in a white paper by John Mankins at NASA 
in 1995, and seems to have become more or less fixed. Since then, the European Space Agency has 
adopted something very similar. So has the US military. (The US Air Force has even created a 
spreadsheet to help determine the TRL of technology. So has the Department of Homeland Security.) 
 
The TRL definitions have some variation in interpretation to suit different organization’s needs, but their 
overall scales match NASA's traditional scale quite closely, focusing on how ready a 
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technology/integration/system is for its application in the intended environment. In Table 1, Weiping and 
colleagues (Tan et al. 2009) compare the TRLs used by the leading government agencies in their 
technology development programs. The agencies tailored the TRL process specifically to their organizations 
in order to produce operational systems on schedule and within budget. The NASA TRLs are the ones listed 
by Mankins (Mankins 1995), and the Department of Defense (DoD) ones are from the DoD Deskbook (DoD 
2005). The Department of Energy (DOE) TRLs here apply only to the nuclear fuel side of DOE (Carmack 
and Pasamehmetoglu 2008). NATO TRLs are given in a 2006 document (NATO, 2006). 
 

Table 1: TRL definitions used by the leading government agencies 

TRL National Aeronautics 
and Space 
Administration (NASA) 

Department of 
Defense (DOD)

 
Department of 
Energy (DoE)

 
North Atlantic Treaty 
Organization (NATO)

 

0 N/A N/A N/A Basic research with future 
military capability in mind 

1 Basic principles observed 
and reported 

Basic principles 
observed and 
reported 

Initial concept 
verified against first 
principles and 
evaluation criteria 
defined 

Basic principles observed 
and reported in context of 
a military capability 
shortfall 

2 Technology concept 
and/or application 
formulated 

Technology concept 
and/or application 
formulated 

Technical options 
evaluated and 
parametric ranges 
are defined for 
design 

Technology concept 
and/or application 
formulated 

3 Analytical and 
experimental critical 
function and/or 
characteristic proof-of-
concept 

Analytical and 
experimental critical 
function and/or 
characteristic proof 
of concept 

Success criteria and 
technical 
specifications are 
defined as a range 

Analytical and 
experimental critical 
function and/or 
characteristic proof of 
concept 

4 Component and/or 
breadboard validation in 
laboratory environment 

Component and/or 
breadboard validation 
in laboratory 
environment 

Fuel design 
parameters and 
features defined 

Component and/or 
breadboard validation in 
laboratory/field (eg 
ocean) environment 

5 Component and/or 
breadboard validation in 
relevant environment 

Component and/or 
breadboard validation 
in relevant 
environment 

Process parameters 
defined 

Component and/or 
breadboard validation in a 
relevant (operating) 
environment 

6 System/subsystem model 
or prototype demonstration 
in a relevant environment 
(ground or space) 

System/subsystem 
model or prototype 
demonstration in a 
relevant environment 

Fuel safety basis 
established 

System/subsystem model 
or prototype 
demonstration in a 
realistic (operating) 
environment or context 

7 System prototype 
demonstration in a space 
environment 

System prototype 
demonstration in an 
operational 
environment 

All quantification 
steps completed and 
fuel is licensed 

System prototype 
demonstration in an 
operational environment 
or context (eg exercise) 

8 Actual system completed 
and “flight qualified” through 
test and demonstration 
(ground or space) 

Actual system 
completed and “flight 
qualified” through test 
and demonstration 

Reactor full-core 
conversion to new 
licensed fuel 
completed 

Actual system completed 
and qualified through test 
and demonstration 

9 Actual system “flight 
proven” through 
successful mission 
operations 

Actual system “flight 
proven” through 
successful mission 
operations 

Routine operations 
with licensed fuel 
established 

Actual system 
operationally proven 
through successful 
mission operations 
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When first invented or conceptualized, most new technologies are not suitable for immediate application. 
They must go through a number of stages including experimentation, refinement, and extensive testing, in 
order to be proven ready for system integration and/or commercialization. As the TRL number gets 
higher, the range of applications gets narrower. At very low TRL numbers, there could be many 
applications for a particular technology. TRL 2 is not reached until there is one application in mind. As the 
TRL number gets higher, the cost of moving from one level to the next gets higher. This cost increase is 
brought about by the need to involve more specialized workers, and the need for keeping track of things 
with more documentation. 

 
Figure 2, adapted from Nolte’s “whale-shaped” chart (Nolte 2008), shows how the usefulness of a 
particular technology evolves in time, and how the technology development phases relate to the TRLs. It is 
clear that most of the TRLs occur early in the technology life cycle, where: 

 TRL 1 to TRL 3 address general conceptual science matters,  
o a step up from TRL1 to TRL2 shifts ideas from pure to applied research, 

 TRL 4 to TRL 5 cover the transition from scientific research to engineering and system development, 
o  TRL 4 is the first step in determining whether the individual components will work together as 

a system (DOE 2009), 

 TRL 6 to TRL 9 focus on engineering matters, 
o TRL 6 begins true engineering development of the technology as an operational system, 
o TRL 9 represents the final stage of the technology, when the technology is fully operational 

and its maturity is reached. 
 

 
 

Figure 2: Technology Life Cycle and Technology Readiness Levels 

3. Software Technology Readiness Level in Smart Grid  

The TRL metrics are applicable to any type of technology, including hardware and software products. 
Measuring the readiness of a software product reflects some combination of quality characteristics 
estimated at a given moment of time. However, it is impossible to produce systems of any size which do 
not change as they develop, so the TRL number is a transient thing. Both the hardware and software 
environments surrounding a software product change and therefore the software products are 
continuously changing and aging (Eick et al. 2001).  
 
Once software is put into use, new requirements emerge and existing requirements change, for example 
as the business running the software changes. Parts of the software may have to be modified to support 
architectural changes or to correct errors that are found in operation, improve its performance, or other 
non-functional characteristics. Consequently, even after delivery, software systems evolve in response to 
demands for change. 

http://experiment.co.tv/
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Building the smart grid requires a lot of computer and software subsystems. Utilities begin to address the 
strategy, management, and regulatory issues involved in transitioning to a smart grid. Consequently, the 
utilities might benefit from using TRLs in their technology acquisition processes. 
 
For hardware, implementing TRLs for the smart grid is not a difficult thing to visualize. The manufacturer 
of a widget intended for the smart grid can assemble convincing evidence during the design and 
development process that the widget is at a level of development that it would not endanger the power 
system if it were put into the field. It has to be admitted that, in the past, due to the lack of this kind of 
documentation, some technologies have been applied to the electric power system before they were 
really ready. For example, back in the 1960s, some early applications of solid state technology to power 
system relaying were less than adequate. Had the devices been subject to the rigor of an appropriate 
qualification program, that experience could have been avoided. However, because the utilities did have 
this bad experience, future technology diffusion has to make the effort to be convincing. Hasty adoption of 
unready technology can sometimes lead to delays in the adoption of ready technology. 
 
For software, the case of an application developed at Pacific Northwest National Laboratory (PNNL) is 
considered. To assure the correct functionality of some products used in the distribution part of the smart 
grid, a computer model simulator, called GridLAB-D, was developed at the U.S. Department of Energy's 
Pacific Northwest National Laboratory. The sophisticated computer program provides a detailed, 
simultaneous simulation of the electric grid, including power flow, end-use loads, and market functions. In 
other words, it models both technical and non-technical interactions within a power grid. The model allows 
users to evaluate new technologies and operational strategies, to craft and refine the characteristics of 
these technologies and strategies, and to predict the results of deploying them. GridLAB-D was designed 
as an open source system having contributors all over the world. Modeling in GridLAB-D uses specific 
classes of objects, and modules, classified by functionality. 
 
The GridLAB-D project team began using TRLs in January 2011 to get a better understanding of technology 
status, manage risks and make decisions in funding, development and deployment. Moreover, TRLs assist 
with assessing the readiness of modules and classes for analysis projects and studies. The software TRLs, 
tailored for the GridLAB-D project, are detailed in Table 2. To assist with an effective and consistent use 
of TRLs in Table 2, a methodology of software readiness assessment is designed. Unfortunately, the 
procedural steps and the evaluation of the obtained results are not yet in final form, since the design 
process is constantly optimized and improved. 
 
Table 2: Software Technology Readiness Level  

TRL Definition  Description  

1.  Basic 
principles 
described 
(mathematical 
formulation) 

Lowest level of software readiness. Basic concept begins to be translated into 
applied research and development by providing a detailed mathematical 
formulation. Examples might include a concept that can be implemented in 
software, or analytic studies of an algorithm’s basic properties.  

2.  Application 
concept 
formulated 
(algorithm) 

Development has begun. Basic individual algorithms or functions are prototyped 
and documented. Results are speculative and there is no proof or detailed 
analysis to support assumptions or expectations. Examples are still limited to 
paper studies. 

3.  Analytical 
proof of 
concept 
(prototype) 

Active research, development and documentation are initiated. Depending on the 
size and complexity of the implementation, basic components of the integrated 
critical system have been designed, built and partially tested. Analytic studies to 
produce code that validates analytical predictions of separate software elements of 
the technology are done. Examples include implementation of software components 
that are not yet integrated or thoroughly tested, but satisfy an operational need. 
Algorithms are run and tested on a surrogate processor in a lab environment. 
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The assessment of software readiness level required individual estimations and evaluations (a subject 
matter expert assesses the TRL of the technology). This is followed by group estimations in meeting or 
conference format for discussing the technology maturity, and a combination of the above when a 

4.  Standalone 
component 
validated 
(earliest 
version) 

Basic software components are integrated to establish that they will work 
together. They are relatively primitive with regard to efficiency and reliability 
compared to the eventual system. System software architecture development 
initiated to include interoperability, reliability, maintainability, extensibility, 
scalability, and cyber-security issues. Software integrated with simulated 
current/legacy elements as appropriate. Verification and validation process is 
partially completed, or completed for only a subset of the functionality in a 
representative simulated laboratory environment. Documentation includes design 
documents and a start of a user manual. 

5.  Integrated 
component 
validated 
(ALPHA 
version) 

Reliability of software ensemble increases significantly. All software components are 
integrated with reasonably realistic supporting elements so that the software can be 
tested and completely validated in a simulated environment. Examples include “high 
fidelity” laboratory integration of software components. System software architecture 
is established. Algorithms run on a processor(s) with characteristics expected in the 
operational environment. Software releases are “Alpha” versions and configuration 
version control is initiated. Full documentation according to the applicable software 
standards, test plans and application examples, including all use cases, cyber-
security and error handling should be provided. 

6.  System - 
subsystem 
demonstrated  
(BETA version) 

Represents a step up from lab scale to engineering scale. Representative model 
(BETA version), which is well beyond that of TRL 5, is tested in a relevant 
environment. Examples include testing a prototype in a live/virtual experiment or 
in a simulated operational environment. Algorithms running on the simulated 
operational environment are integrated with actual external entities. Configuration 
control and quality assurance processes are fully deployed. Verification and 
Validation process is completed for the intended scope (including robustness) 
and the system is validated in an end-to-end fully representative operational 
environment (including real target). 

7.  Prototype 
demonstrated 
(product 
RELEASE) 
 

Requires the demonstration of an actual system prototype in an operational 
environment. Algorithms running on processor of the operational environment are 
integrated with actual external entities. Software support structure is in place. 
Software releases are in distinct versions. Functionality and performance are not 
significantly degraded by frequency and severity of software deficiency reports. 
Verification and validation is completed, validity of solution is confirmed within 
intended application. Requirements specification are validated by the users. 
Engineering support and maintenance organization, including helpdesk, are in place. 

8.  System 
“analysis 
qualified”  
(general 
product) 

Software has been demonstrated to work in its final form and under expected 
conditions. In most cases, this TRL represents the end of system development. 
Examples include test and evaluation of the software in its intended system to 
determine if it meets design specifications. Software releases are production versions 
and configuration controlled, in a secure environment. Software deficiencies are 
rapidly resolved through support infrastructure. Full documentation including 
specifications, design definition and justification, verification and validation 
(qualification file), users and installation manuals, training and education materials, 
software problem reports and non-compliances should be provided. 

9.  System proven  
(live product) 

Represents actual application of the software in its final form and under designed 
conditions, such as those encountered in operational test and evaluation. In 
almost all cases, this is the end of the last “bug fixing” aspects of the system 
development. Examples include using the system under operational design 
conditions. Software releases are production versions and configuration 
controlled. Frequency and severity of software deficiencies are at a minimum. 
Sustaining engineering, including maintenance and upgrades, updates to 
documentation and qualification files are in place. 



____________________________________________________________________________________ 
Excerpt from PNSQC 2011 Proceedings PNSQC.ORG Page 8 
Copies may not be made or distributed for commercial use  

consensus of a single estimate is sought. For each GridLAB-D class, the frequency distribution of the 
individual estimations and evaluation is constructed and incorporated in the mean value calculation. The 
method of determining TRL of a class is difficult to be extended to modules because classes can often 
interact in ways that are not measured by the class TRL. The TRL of each GridLAB-D module is 
calculated as the lowest TRL found in the classes used by the model. Since the interaction between 
classes is not quantized in the TRL grading, the actual TRL of any model may be lower than the TRL 
computed by GridLAB-D. For illustration purposes, Table 3 presents the TRLs assessment for two 
GridLAB_D models - climate and residential. By choosing what classes are included in a specific model, 
the user has the possibility to increase or decrease the TRL of that model, i.e. a residential home having 
house_e and water heater as components has a modul TRL of 7, while house_e .by itself has a module 
TRL of 9. 
 
Table 3: GridLAB-D TRL assessment 

Module 
Classes 

Module TRL 
Name TRL 

climate weather 9 9 

residential 

clothes washer 2 

2 

dishwasher 2 

dryer 2 

evcharger 4 

freezer 5 

house_a 6 

house_e 9 

lights 8 

microwave 5 

occupant load 8 

plug load 8 

range 5 

refrigerator 5 

water heater 7 

zipload 9 

 
All of the above proved that TRLs can result in more reporting, paperwork and review time. It takes time 
for participants in GridLAB-D work to adjust to using TRLs and for the TRL process to have an effect 
project-wide. Understanding and communicating the detail of the TRL assessment is vital to avoid 
unnecessary concerns. For example, some elements may have a low TRL but a clear development path 
and therefore their maturation is a low risk.  
 
Systems engineering processes are not addressed in the lower TRLs, which can result in difficulties 
transitioning technologies to higher TRLs. There are situations when moving a TRL up on the scale is a 
matter of providing resources to rapidly increase the TRL or seek an alternative solution (technology) with 
a higher TRL. 
 
It may be noted that the TRL scale of Table 2 does not exactly parallel the TRL values in Table 1. For 
example, in the (hardware-based) Table 1, TRL 4 and 5 are no more than breadboard systems, and it is 
sometimes said that one can reach TRL 6 in a good Hobby Shop. (Mind you, TRL 5 at NASA requires 
that a failure modes and effects analysis (FMEA) is performed, not something usually associated with a 
Hobby Shop.) In contrast, TRL 5 in Table 2 talks about “releasing” software, a process that surely 
involves leaving the laboratory or workshop environment. This difference in process results from the 
difference in testing needs between hardware and software. 
 
Based on the TRL, stating how successful each subsystem of the hierarchy will be requires that the TRLs 
be linked to test plans and trials. This linkage provides a clear statement on the TRL achievement at each 
stage of the project. The TRL definitions provide a convenient means to further understand the 
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relationship between the scale of testing, fidelity of testing system, and testing environment and the TRL 
(DOE 2009). As it can be seen in Table 4, the scale requires that for a TRL 6 testing should be completed 
at an engineering or pilot scale, with a testing system fidelity that is similar to the actual application. TRL 6 
represents the point when the software is delivered to customers for beta testing. Therefore, the 
verification and validation process should be completed for the intended scope and the system should be 
validated in a simulated environment with some external features. The TRL scale used in Table 2 
requires that testing of a prototypical design in a relevant environment be completed prior to incorporation 
of the technology into the final design of the facility. 
 
The Technology Readiness Level is, of course, not just monitoring for the sake of monitoring. It is a useful 
part of the management process. TRL levels were originally intended as a way to assess the amount of 
effort needed to get something qualified for space use. Implicit in that statement is the fact that if a widget 
was not at a good solid TRL 6 or even a TRL 7, it was not going into space. Whether for manned-space 
or not, these levels were important. In adapting the idea to software, it is not unusual to release software 
to the users in a somewhat unprepared state. What this means is that at a TRL that would just about get 
a widget into space, the software is released to Beta test. Therefore, the important TRL number is really 
TRL 6. What is needed up to TRL 6 controls whether the software leaves the workshop. This is the 
message to take away from the TRL numbers in Table 2. 
 

Table 4: Relationship of Testing Recommendations to the TRLs 

TRL 
Level 

Scale of testing 
1 

System 
Fidelity

2
 

Environment 
3 

Numbered notes 
1. Scale of testing 

 Full Scale matches final application. 

 1/10 Full Scale < Engineering/Pilot 
Scale < Full Scale (Typical) 

 Lab Scale < 1/10 Full Scale (Typical) 
2. System Fidelity 

 Identical – matches final application in 
all respects 

 Similar – matches final application in 
almost all respects 

 Pieces – matches a piece or pieces of 
the final application 

 Paper – exists on paper 
3. Environment 

 Operational (full range) – full range 
operational capacity 

 Operational (limited range) – limited 
range operational capacity 

 Relevant – simulated environment plus 
a limited range of external features 

 Simulated – restrictive range of 
simulation 

1  Paper   

2  Paper   

3 Lab  Pieces Simulated  

4 Lab Pieces  Simulated  

5 Lab/Bench Similar Simulated 

6 
Engineering/Pilot 
Scale  

Similar Relevant 

7 Full Similar  
Operational 
(limited range) 

8 Full Identical 
Operational (full 
range) 

9 Full Identical 
Operational (full 
range) 

 

4. Conclusions 

Properly applied in system engineering management, Technology Readiness Levels are of value in 
understanding technology status, managing risks and making decisions in funding. For the development 
and deployment of software products they assist the system engineer and the manager. The TRLs 
reduce the amount of subjectivity about project status, and therefore, planning and execution can be 
managed better. 
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TRLs can serve a number of useful purposes in the electric generation and delivery world. Overall, the 
transitioning of technology from laboratory to application becomes a carefully managed process. For the 
utility world and the hardware headed for the smart grid, the TRL sequence leaves a trail of evidence that 
can be used to overcome a well-established risk aversion. 
 
The same observation is necessarily true for software. However, for software there are a few additional 
difficulties in applying the standard TRL method. For example, inevitable software “decay”, architecture 
transformations and the need for software maintenance after release, increase the volume of 
documentation involved. Nevertheless, the documentation serves a purpose, and it can be argued that it 
justifies its existence. 
 
The proposed software TRLs described in this paper have been applied to an actual software system 
development, i.e. GridLAB-D. While the application of TRLs to the software is presently in its relatively 
early stages, it strengthens the smart grid software capabilities even further by pinpointing and even 
preventing system malfunction before release to the customers. 
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